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1 Introduction

Radical theory for groups has not been studied intensively by radical the-
orists since the 1960s, which is unfortunate. There are striking similarities
between radicals of groups and associative rings � (ADS) is universally valid,
the lower radical construction stops at or before step ω and the intermediate
classes have a neat description by accessible subgroups, every class de�nes
an upper radical � and sometimes the group proofs are easier. In some ways
life is harder in groups: for example we have nothing like an Andrunakievich
Lemma. For whatever reason, there are some things we don't know about
groups though the corresponding questions have long been answered for as-
sociative rings. We don't know whether there is a lower radical construction
over a class of groups which requires in�nitely many steps. We don't even
know how many steps are required over the class of abelian groups: we only
know that at least three are required. With such basic questions unanswered,
and given the current state of scholarly activity in abstract radical theory, it
seems like an appropriate time to re-direct some attention on to the group
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case. Further encouragement comes from a few relatively recent appearances
of group radicals in other parts of mathematics.

This is not a complete survey of radical theory for groups. We have
taken a few topics where we can illustrate the similarities with rings as well
as some contrasts both in the availability of methods and the comparative
paucity of answers to natural questions. There are a few proofs, included
for various reasons, but mostly we give references. On the whole we give
references to primary sources (with some supplementary references) but for
some more peripheral results we have been content to give secondary sources
only. For further reading [21] and [45] are recommended.

There is some mention of the role of groups in the history of rad-
ical theory, and the intriguing connections between the prime radical and
the lower radical over abelian groups disussed by Baer [4] (implicitly) and
Shchukin [50], [53] (explicitly).

2 The standard results

Semi-simple classes of groups are hereditary and the lower radical construc-
tion terminates in at most ω steps.These and other things are more easily
proved for groups than for rings partly because normality is de�ned by a type
of automorphic invariance. (ADS) is almost immediate: ifR is a radical class
andN/G then then for each g ∈ G we have gR(N)g−1 = R(gNg−1) = R(N).
In general if K/N/G then the normal subgroup K∗ generated by K is gener-
ated by normal (inK) subgroups isomorphic toK, namely the gKg−1, g ∈ G.
This leads to a characterization of the classesMn in the Kurosh lower radical
construction over a homomorphically closed classM: G is inMn if and only
if for every non-trivial homomorphic image G we have H1 /H2 / . . ./Hn−1 /G
for some non-trivial H1 ∈ M. This characterization and the termination
result are due to Shchukin [51]. For more details and a comparison with the
corresponding proofs for associative rings (and other structures) see �2.1 of
[21].
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3 Some history

The usual account of the genesis of abstract radical theory begins in ring
theory and proceds along the Wedderburn-Artin-Jacobson path, leaps to
Amitsur and Kurosh in the 1950s and then describes how the general theory,
once established, spread to other algebraic structures besides rings (though
its separate incarnation for modules as torsion theory is also acknowledged).
It is a little more complicated than this, and the role of group theory should
be recognized.

Although Kurosh's fundamental paper on radicals of groups [33] ap-
peared nine years after his rings and algebras paper [32], the in�uence of
his earlier work and that of others of the Moscow School on group theory is
signi�cant. For instance, in a 1935 paper [31] concerning a generalization of
the Jordan-Hölder Theorem to in�nite groups, Kurosh introduced the notion
of a normal series accessible in itself: a trans�nite series

N0 / N1 / . . . / Nα / . . . / Nγ = G

such that for each α there are �nitely many indices β1, β2, . . . , βn such that

Nα / Nβ1 / Nβ2 / . . . / Nβn / G.

This concept was used in [33] and in subsequent papers on radicals of mul-
tioperator groups rings and algebras (see, e.g., [46], [2]).We note that [31]
appeared about halfway between the seminal papers of Artin [3] and Jacob-
son [28].

It is reasonable to say that general radical theory grew out of the
need to �nd generalizations, useful in larger classes of groups and rings,
of, respectively, solvability and nilpotence in �nite groups and nilpotence in
rings with some sort of �niteness condition. (Of course it grew a long way!)
Looked at appropritely, the two tasks can be seen as very closely related,
a circumstance conducive to a parallel development in the group and ring
cases, but there are important di�erences, which we might almost describe as
�cultural� and which make it less surprising that radical theory for groups (at
least in the Kurosh-Amitsur sense) went very quiet after the 1960s (though
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it had become �mainstream� enough to appear in Robinson's book [45] in
1972 and has made several more recent appearance in the literature).

There is a wide-ranging analogy between groups and rings in which
the group operation (which we'll call multiplication) corresponds to the ring
addition and the commutator operation [•, •] to ring multiplication. The
analogy involves the following correspondences:

normal subgroup ↔ ideal
centre of group ↔ two sided annihilator of ring

centralizer of element ↔ two sided annihilator of element
nilpotent ↔ nilpotent

hypercentral ↔ (two sided) T -nilpotent
abelian group ↔ zeroring.

(As the commutator is anticommutative, there is no �handedness� on the
group side. A subgroup N is normal in a group G if and only if [g, n] ∈ N
for all n ∈ N, g ∈ G and [n, g] ∈ N if and only if [g, n] ∈ N and so it
goes with other things, so we can associate two sided ring concepts with
group concepts.) Because of associativity of ring multiplication, solvabil-
ity doesn't correspond to anything useful. Things are di�erent though for
non-associative rings where the analogy still holds. (In Lie rings, practition-
ers even use terms like �centre� and �abelian� rather than �annihilator� and
�zeroring�.)

As noted, abelian groups correspond to zerorings, i.e.in e�ect to them-
selves, or, if you like,

�{groups} ∩ {rings}={abelian groups}�.

There is a certain curiosity value in knowing how close groups can be to rings
without being zerorings. The following seems to be due to Levi [34].

Proposition 3.1 In a group [•, •] is distributive over multiplication if and
only if [[x, y], z] = 1 for all x, y, z.

Proof. Assuming distributivity, we have xyzx−1z−1y−1 = x(yz)x−1(yz)−1 =
[x, yz] = [x, y][x, z] = xyx−1y−1xzx−1z−1, so zx−1z−1y−1 = x−1y−1xzx−1z−1
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and hence 1 = (zx−1z−1y−1)−1x−1y−1xzx−1z−1 = yzxz−1x−1y−1xzx−1z−1 =
y[z, x]y−1[x, z] = [y, [z, x]], and conversely, if [y, [z, x]] = 1 then working back-
wards we get (zx−1z−1y−1)−1(x−1y−1xzx−1z−1) = 1, so x−1y−1xzx−1z−1 =
zx−1z−1y−1 and thus [x, y][x, z] = xyx−1y−1xzx−1z−1 = xyzx−1z−1y−1 =
[x, yz]. �

Thus we have a nearring if and only if the group is nilpotent of class
≤ 2.(In fact the commutator is associative if and only if [x, [y, z]] = 1 for all
x, y, z.)

Although nilpotent groups and rings correspond to each other they
have been viewed rather di�erently. Nilpotent rings were seen as something
like a contamination to be eliminated, whence the search for more general
properties which could be factored out to produce a ring containing no trace
of the new property and hence no nilpotence. Nilpotent (and solvable) groups
were seen as nice. Even abelian groups were seen as nice but largely irrelevant
� the proper way to view them is as modules � in contrast to zerorings which
are utterly trivial from the point of view of ring theory. It is not really
surprising then that group theorists attach great importance to the �Hirsch-
Plotkin radical� � the largest locally nilpotent normal subgroup � though it
is not a radical in the Kurosh-Amitsur sense. (We'll see shortly that it comes
fairly close.)

4 Examples

We present a few examples of radical classes of groups in this section. Some
classes we mention have more than one standard name and notation. We'll
use �descriptive script� notation for classes and choose a name for each but
occasionally indicate an alternative. We denote the lower radical class de�ned
by a classM by L(M); the classesMα are the classes from the Kurosh lower
radical construction.

Example 4.1

Let AB denote the class of abelian groups. Then L(AB) is the class of sub-
solvable groups �rst discussed by Baer [4]. It was proved independently by
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Chang Wang-Hao [9] and Phillips and Combrink [43] that L(AB) 6= AB2.
Apart from its radical theoretic implication this discovery answered a ques-
tion in group theory by showing that two classes of generalized solvable
groups are distinct. We note that L(AB) is strongly hereditary, since AB is.

Example 4.2

Let S be a set of primes, TS the class of S-torsion groups whose elements
have orders in the monoid generated by S. When S is the set of all primes
we just write T (the class of torsion groups). It is quite straightforward to
show that all these classes are radical classes. In general it is far from true
that T (G) is the set of elements with �nite order (and the corresponding
statements are true for each TS). These classes are strongly hereditary and
a group belongs to a class TS if and only if its �nitely generated subgroups
do so.

Example 4.3

Let ČC be the class of Chernikov complete groups, those groups which are gen-
erated by nth powers for each n ∈ Z+. (As a generalization for each set S of
primes we can consider the class ČCS of groups generated by their nth powers
where n varies over the monoid generated by S.) If N /G and N,G/N ∈ ČC,
then for x ∈ G there exist a1, a2, . . . , ak ∈ G with xN = a1

na2
n . . . ak

nN and
then as x(a1

na2
n . . . ak

n)−1 ∈ N there are elements b1, b2, . . . , bm ∈ N with
x(a1

na2
n . . . ak

n)−1 = b1
nb2

n . . . bm
n and thus x = b1

n . . . ak
n. Hence G be-

longs to ČC which is therefore closed under extensions. The rest of the proof
that ČC is a radical class uses similarly straightforward arguments and the
same goes for the classes ČCS. These radical classes are closed under unions
of directed sets of subgroups but are not hereditary as can be seen from the
divisible abelian groups.

Example 4.4

Let AF denote the class of anti�nite groups, those without proper subgroups
of �nite index. A group is anti�nite if and only if it has no proper normal
subgroup of �nite index (see, e.g., [27], p.44) so AF is the upper radical
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de�ned by the class of �nite groups. It is strict. It is clear that ČC ⊆ AF .
In the same way each ČCS is a subclass of the upper radical class de�ned by
the groups with orders in the monoid generated by S. The �rst inclusion is
proper as is the second if S contains a prime ≥ 4381. These statements follow
from the known existence of in�nite simple groups of prime exponent. See
[45], Part 2, pp.123-124. If S = {2} or {3} the second inclusion is not proper.
Commutators are products of squares, so if G(2) is the (normal) subgroup of
G generated by the squares and G 6= G(2) then G/G(2) is an abelian 2-group
and so has a �nite homomorphic image. The second Engel word [[x, y], y] is
a product of cubes and so G/G(3) (with the obvious meaning) is a 2-Engel
group. These are nilpotent of class ≤ 3 (see [45],Part2, p.45) and it follows
that likewise ČC coincides with the upper radical class de�ned by the �nite
3-groups. Explicit formulae for the products of powers alluded to are given
in [25], for example.

Example 4.5

The class LF of locally �nite groups is a (strongly hereditary) radical class.
The tricky part is proving that LF is closed under extensions (Schmidt[49],
Theorem 6). A proof is given in [21], p. 22.

5 Wreath products

An important source of examples and counterexamples and of demonstra-
tions that groups are �radically di�erent� from rings is the wreath product, a
standard construction in group theory which may not be universally familiar
and which we'll therefore brie�y describe.

What we discuss here is called the regular wreath product to distin-
guish it from other variants, but we'll suppress the adjective. Let G and
H be groups and let B =

∏
Gh, h ∈ H, be a direct (cartesian) product of

copies Gh of G. Then H acts on itself as index set via the left regular rep-
resentation x 7→ hx and hence on B: (gx)x∈H is sent to the element which
has gx as its hx- coordinate and hence gh−1x as its x-coordinate, i.e. we have
(gx)x∈H 7→ (gh−1x)x∈H . The wreath product G oH is a semidirect product of
B and H with
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((ax)x∈H , h)((bx)x∈H , k) = ((ax)x∈H(bh−1x)x∈H , hk) = ((axbh−1x)x∈H , hk).

The identity is (1, 1) and ((ax)x∈H , h)−1 = ((a−1
hx)x∈H , h

−1). The restricted
wreath product is obtained if we replace the cartesian product with the re-
stricted product {(ax)x∈H : ax = 1 for almost all x}.

We use the wreath product to show that there is nothing in group
theory analogous to the Andrunakievich Lemma or the following results.

Accessible idempotent subrings are ideals.

If I / J / A (rings) and J/I is semiprime, then I / A.

Proposition 5.1 For every group G with |G| > 1 there is a chain H/K/M
of groups with K/H ∼= G and H 6 M .

Proof. Let 〈a〉 = {a, e} be a cyclic group of order 2. In G o 〈a〉 we have,
for g 6= 1, ((1, 1), a)((g, 1), e)((1, 1), a)−1 = ((1, 1), a)((g, 1), e)((1, 1), a−1) =
((1, g), a)((1, 1), a−1) = ((1, g), e). Thus Ga / Ga ×Ge = B / G o 〈a〉, but
Ga 6 G o 〈a〉, while B/Ga

∼= Ge
∼= G. �

This demonstrates a big di�erence between groups and associative
rings. There appears to be nothing like the wreath product in the latter
case, though for non-associative rings and algebras the situation could be
more complicated: there is a kind of wreath product for Lie algebras [42]. It
should be pointed out that consideration of (group) wreath products provided
a large part of the motivation for the non-associative ring constructions in
[16].

6 Radicals (and non-radicals) related to nilpo-

tence

There are many varieties of non-associative rings in which the locally nilpo-
tent rings do not form a Kurosh-Amitsur radical class. For groups the story is
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the same. Even �nite nilpotent groups are not closed under extensions (look
at dihedral groups for example) so naturally a class of �generalized nilpotent�
groups, a class whose �nite members are the �nite nilpotent groups, will not
be a radical class, though we can ask how close it comes to being one. One
measure of closeness is the number of steps required in its lower radical con-
struction. If we take the p-groups in such a class we might hope for better
luck.

A group is
locally nilpotent if its �nitely generated subgroups are nilpotent;
Baer nilpotent [4] if every �nite homomorphic image of every subgroup is
nilpotent.

Let LN ,BN denote, respectively, the classes of locally nilpotent and
Baer nilpotent groups . Neither of these is a radical class.

The class of p-groups in LN is a radical class. This is a consequence
of

Proposition 6.1 A p-group is locally nilpotent if and only if it is locally
�nite.

Proof. Let G be a nilpotent p-group with upper central series

1 ⊆ Z(G) ⊆ Z2(G) ⊆ . . . ⊆ Zn(G) = G.

Then each Zi+1(G)/Zi(G) is an abelian p-group and hence locally �nite, so
by 4.5 G is locally �nite. It follows that every locally nilpotent p-group is
locally �nite. Conversely, in a locally �nite p-group every �nitely generated
subgroup is a �nite p-group and hence nilpotent. �

Using 4.2 and 4.5 we get

Corollary 6.2 The class of locally nilpotent p-groups is a radical class for
all primes p.
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Every p-group is Baer nilpotent, so trivially the Baer nilpotent p-
groups form a radical class. We have

LN ⊂ BN

(proper inclusion: see [45], Part 2, p. 9). Although LN is not a radical
class we have L(LN ) = LN 2. This was in e�ect proved by Plotkin [44]. His
argument shows that

L(M) = M2 for every homomorphically closed class M of groups
such that

N,K / G and N,K ∈M⇒ NK ∈M and
M is closed under unions of directed sets of subgroups.

For a proof with this generality see [21], p.89.

The e�ect of radicals on nilpotent groups and the nature of the in-
tersection of a radical class with the class of nilpotent groups is completely
controlled by abelian groups. This is made more precise in our next result.
(Note that we can take the nilpotent groups as a universal class for radical
theory.)

Theorem 6.3 (War�eld [56]; see also [21], p.89.) For a radical class R
of abelian groups, let R̃ denote the class of nilpotent groups with a �nite
ascending invariant series with factors in R. Then

(i) the correspondence R 7→ R̃ de�nes a bijection from the radical
classes of abelian groups to those of nilpotent groups and

(ii) R̃ = L(R) (constructed in the class of nilpotent groups) for all R.
Also

(iii) if N is nilpotent and U is a radical class of nilpotent groups, then
N ∈ U if and only if N/[N,N ] ∈ U .

If a radical class U of nilpotent groups contains a cyclic group or Q
then fairly clearly it contains a non-abelian group. In the contrary case,
all abelian groups in U are divisible torsion groups. It turns out then that
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all groups in U are abelian. We'll deduce this shortly from something more
general. The class ČC of Chernikov complete groups contains the class C of
complete groups, those in which every element is an nth power, for all n. A
hypercentral group is one with an ascending central series. It seems likely
that the behaviour towards hypercentral groups of radicals in general and the
Chernikov complete radical in particular might be tractable but complicated
enough to be interesting. The following results of Chernikov are pertinent.

(i) All hypercentral Chernikov complete groups are complete ([10],
Theorem 10).

(ii) All hypercentral anti�nite groups are Chernikov complete ([10],
Theorems 1,2).

(iii) Every (Chernikov) complete hypercentral torsion group is abelian
([10], Theorem 5).

The ring analogue of hypercentrality is T -nilpotence. Radicals of T -
nilpotent rings are, like those of nilpotent rings, determined by zerorings [15],
so we have an analogue for rings of War�eld's theorem which can be general-
ized to T -nilpotent rings. It's not clear whether we can generalize War�eld's
theorem itself in group theory, but (iii) is an important result pointing in
this direction (and it generalizes the result stated above concerning radical
classes of nilpotent groups de�ned by divisible torsion groups).

In the same paper [10] Chernikov gives an example of a Chernikov
complete group which is not complete, based on a construction of Schmidt
[48]. This group is an extension of Z(p∞) by itself. Robinson [45], Part 2,
pp. 123-124 uses Z(p∞) o Z(p∞) to the same e�ect. Thus even the lower
radical class L(Z(p∞)) contains groups which are not hypercentral. This is
not very ring-like: the lower radical class de�ned by the zeroring on Z(p∞)
contains only the divisible p-zerorings. An interesting problem: sort out the
relationship between the following radical classes: ČC, L(C), L({Q ∪
{Zp∞) : p prime }).

While the classes ČC and C can be viewed as generalizations of di-
visible abelian groups, they are very much more general. For example there
are are �nitely generated complete groups [24]. (Complete and Chernikov
complete groups are often called radicable and semiradicable respectively in
the literature.)

It is natural that there should be a degree of similarity between some
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generalizations of nilpotent rings and some generalizations of solvable and
nilpotent groups. We end this section with a look at the prime radical and
L(AB). Inasmuch as abelian groups correspond to zerorings their lower radi-
cal classes could be said to correspond also. There are other ways of describ-
ing the prime radical however, and we shall consider two here. Both of them
have correspondents for groups.

In 1949 McCoy [36] considered the prime radical as the intersection
of all prime ideals and obtained a description in terms of m-systems. Two
years later Levitzki [35] used the related idea of an m-sequence: a sequence
a1, a2, . . . , an, . . . such that there is another sequence b1, b2, . . . , bn, . . . with
an+1 = anbnan for each n. An element a belongs to the prime radical if
and only if every m-sequence starting with a becomes zero, so that in par-
ticular a ring is in the prime radical class if and only if all its m-sequences
become zero. Four years after this Baer [4] showed that (in our terminology)
a group is in AB2 if and only if for all sequences a1, a2, . . . , an, . . . for which
there is another sequence b1, b2, . . . , bn, . . . such that an+1 = [an, [an, bn]] for
every n, eventually an = 1. We have preserved the original notation, but
the di�erence in appearance is super�cial (the commutator operation being
anticommutative). Baer's sequences correspond to m-sequences under our
group-ring correspondence. Baer characterizes AB2 by these sequences, but
of course the prime radical class is the second step class over the zerorings.

The prime radical is the intersection of the prime ideals (or the whole
ring). Shchukin [50], following on from work of Schenkman [47] and Murata
[38], sought a �prime radical� for groups, using a concept of prime normal
subgroup in accord with the group-ring analogy. Thus a normal subgroup P
of G is prime if for A,B /G with [A,B] ⊆ P we must have A ⊆ P or B ⊆ P .
This also led to AB2. Again the parellel with rings is striking. This story has,
in a sense, a happy ending. Later Shchukin [53] showed that all L(AB)-semi-
simple groups are subdirect products of prime L(AB)-semi-simple groups, so
that L(AB) is �special�. Are there any other interesting group radicals
which are special in this sense?

7 Verbal radicals, amenability, categories ...

A variety which is closed under extensions is a radical class (in contexts
where everything makes sense) and sometimes a semi-simple class as well.
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There are no non-trivial extension-closed varieties of groups: one source of
this result is the Neumanns' results [39] on the structure of the set of group
varieties with respect to the Mal'tsev product. There are not even any non-
trivial group varieties V satisfying the weaker condition that if N and K are
in V and both are normal in G then NK ∈ V . This result is due to Shores
[54]. (Thus no group variety satis�es the conditions on p.10.) Nevertheless
there are ways of getting group radicals which are related to varieties. We'll
examine two such.

Every variety determines a strict upper radical class and these were
studied by Shchukin [52]. Let V be a group variety, RV its upper radical
class. A radical arising in this way is called a verbal radical. Let G(V) denote
the verbal subgroup of G with respect to V . Let G(V0) = G, G(Vα+1) =
G(Vα)(V) for all ordinals α and let G(Vβ) =

⋂
γ<β G(Vγ) for limit ordinals

β. For each G there is some ordinal λ for which G(Vλ+1) = G(Vλ) and then
RV(G) = G(Vλ) [52]. An example of a verbal radical is the class RAB of
perfect groups. The radicals de�ned by atomic varieties recently introduced
by Martynov [37] in a general setting and studied by Kornev [29] and by
Kornev and Pavlova [30] in groups, rings and group rings also �t in here.

Verbal radicals have arisen more recently in algebraic topological con-
texts. Berrick [5] has found a signi�cance for surjective homomorphisms
f : G → H such that f(RAB(G)) = RAB(H). Casacuberta, Rodríguez and
Scevenels [8] established a connection between verbal radicals and homotopy
theory, in the process establishing a rather interesting result concerning the
former. For every variety V of groups there is a locally free group LV ∈ RV
such that for every group G, RV(G) is generated by the images of the homo-
morphisms LV → G. See also [7].

We'll call a radical class local if it satis�es the condition

G ∈ R ⇔ each �nitely generated subgroup of G is in R.

ThenR is local if and only if it is strongly hereditary and closed under unions
of directed sets of subgroups. E.g. T is local.

A group G is amenable if it has a �nitely additive left invariant mea-
sure µ such that µ(G) = 1. The notion of amenability arose from the Banach-
Tarski �paradox�. Amenable groups G are the �non-paradoxical� ones and the
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measure of G can be transferred to sets on which G acts, which are accordigly
not paradoxical with respect to G. For background and full details of all this
see Wagon [55]. Its signi�cance for our present discussion comes from

Theorem 7.1 The class AG of amenable groups is a local radical class.

This theorem is an amalgam of results of von Neumann [40], Day
[13] and Følner [14]. It is known that �nite and abelian groups are amenable,
while free groups of rank > 1 are not. Now it's clear that intersections of local
radical classes are local radical classes, so there is a smallest local radical class
containing the �nite and abelian groups. Its members are called elementaty
groups and we'll call the class EG. The groups without free subgroups of
rank > 1 also form a local radical class [19]. Following Day [13], we'll call
this class NF . We have

EG ⊂ AG ⊂ NF

and each inclusion is known to be strict: again see [55] for details. Ching
Chou [11] gave a trans�nite construction of EG. In [17] there is a trans�nite
construction for the smallest local radical class containing a given class of
rings and this transfers straightforwardly to groups (cf. [20]). Recently Osin
[41] has considered local radical classes of groups under the name elementary
classes, using the Ching Chou construction to build them. (This construction
di�ers from that of [17].) It was proved in [17] that local radical classes are
the same things as extension-closed locally equational classes in the sense of
Hu [26]. This is the other link between radicals and extension-closed varieties
adverted to at the beginning of this section.

We note �nally that there has been much work in recent years on
radicals in categories with a strong emphasis on the extension to non-abelian
categories of torsion theory as previously developed in certain abelian cat-
egories. (For example see [6], [12] and their references.) Groups form a
semi-abelian category and might thus be expected to feature at least as a
source of examples in this work (and the same goes for rings, for that mat-
ter). However there is a culturally imposed restriction that the assignment
of radicals should be functorial, and this requires strictness. Now many
of the more familiar radical classes of groups satisfy extra conditions: thus
T , L(AB) and L(LN ) are strongly hereditary. There is never going to be any
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interaction between these and �torsion theory� as the only strongly heredi-
tary strict radical classes of groups (in fact the only hereditary strict ones
[18]) are the class of all groups and the class of one element groups. Note,
though, that verbal radicals are strict.

8 Radicals and representations

Andrunakievich and Ryabukhin [1] showed that every radical of rings could
be represented by a class of modules . In this �nal section we brie�y describe
how group radicals can similarly be represented in terms of group actions.
We omit the proofs: they can be adapted fairly mechanically from those of
the corresponding ring results which are given in detail in [23], pp.118 �.

For a group G, a G− set is a set E 6= ∅ on which G acts by permu-
tations, i.e. for which there is a homomorphism F : G → SE, the group of
permutations of E, but for g ∈ G, x ∈ E we write gx rather than F (g)(x).
If E is a G-set, we let KerG(E) = {g ∈ G : gx = x∀x ∈ E}. If E is a G-set,
N /G and N ⊆ KerG(E) then E is a G/N -set with respect to gNx = gx and
KerG/N(E) = KerG(E)/N . If N / G and E is a G/N -set, then by de�ning
gx = gNx we make E a G-set with N ⊆ KerG(E).

For each group G let ΣG be a class of G-sets, Σ =
⋃
G ΣG. Let

Ker(ΣG) =
⋂
{KerG(E) : E ∈ ΣG}. Here are some conditions Σ might

satisfy.

(M1) If E ∈ ΣG/N , then E ∈ ΣG.
(M2) If E ∈ ΣG and N ⊆ KerG(E), then E ∈ ΣG/N .
(M3) If Ker(ΣG) = {1} then ΣN 6= ∅ for every N / G with |N | > 1.
(M4) If ΣN 6= ∅ for each N / G with |N | > 1, then Ker(ΣG) = {1}.

(The notation in (M1) and (M2) has the same meaning as above.)

Let F (Σ) = {G : ∃E ∈ ΣG with KerG(E) = {1}}. If Σ satis�es (M3),
then F (Σ) is a regular class.

Proposition 8.1 For a class Σ satisfying (M1), (M2) and (M3), let RΣ =
{G : ΣG = ∅}. Then RΣ is the upper radical class de�ned by F (Σ).
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Proposition 8.2 If Σ satis�es (M1), (M2), (M3) and (M4), then
(i) RΣ(G) = 1 if and only if G is a subdirect product of groups in

F (Σ) and
(ii) RΣ(G) = Ker(ΣG) for every group G.

As in the ring case, for every radical we can �nd a de�ning Σ but it is too
big to be practically useful. Note that for the proof of this claim we need
a faithful G-set for each group G and the regular action of G on itself will
serve. In the ring case the corresponding role of a universal faithful module
was played by the standard unital extension.

We do not have any useful examples of classes satisfying (M1)-(M4),
but this matter has not been explored very much. Probably (M4) will prove
to be elusive, but there may be interesting things to �nd among the classes
satisfying (M1)-(M3) as in [22]. Another possibility would be to look at
classes in which theG-sets have some extra structure and the action is de�ned
by a homomorphism from G into automorphisms of some kind. Here is one
example of this kind of thing.

Let K be a class of groups and for each group G let ΣG consist of
all groups in K with all possible actions of G by automorphisms. Then
RΣ = {G : every K oG with K ∈ K is a direct product }.

Acknowledgement. The author is grateful to Laci Kovács for help-
ful correspondence.

References

[1] V. A. Andrunakievich and Yu. M. Ryabukhin, Modules and radicals,
Soviet Math. Dokl. 3(1964), 728-732.

[2] V. A. Andrunakievich and Yu. M. Ryabukhin, Torsion and Kurosh
chains in algebras, Trans. Moscow Math. Soc. 29(1973), 17-47.

[3] E. Artin, Zur Theorie der hyperkomplexen Zahlen, Abh. Math. Sem.
Univ. Hamburg 5(1927), 251-260.

[4] R. Baer, Nilgruppen, Math. Z. 62(1955), 402-437.

16



[5] A. J. Berrick, Group epimorphisms preserving perfect radicals, and
the plus-construction, Lecture Notes in Math. 1046 (Algebraic K-
theory,number theory, geometry and analysis (Bielefeld, 1982), 1-12.

[6] D. Bourn and M. Gran, Torsion theories in homological categories, J.
Algebra 305(2006), 18-47.

[7] C. Casacuberta and A. Descheemaeker, Relative group completions, J.
Algebra 285(2005), 451-469.

[8] C. Casacuberta, J. L. Rodríguez and D. Scevenels, Singly generated
radicals associated with varieties of groups, London Math. Soc. Lecture
Note Ser. 260 (Groups St. Andrews 1997 in Bath, I) , 202-210.

[9] Chang Wang-Hao, On the minimal radical class over a [sic] class of
abelian groups, Soviet Math. Dokl. 4(1963), 552-555.

[10] S. N. Chernikov, Complete groups having an ascending central series (in
Russian), Mat. Sb. 18(60)(1946), 397-422.

[11] Ching Chou, Elementary amenable groups, Illinois J. Math. 24(1980),
396-407.

[12] M. M. Clementino, D. Dikranjan, W. Tholen, Torsion theories and rad-
icals in normal categories, J. Algebra 305(2006), 98-129.

[13] M. M. Day, Amenable semigroups, Illinois J. Math. 8(1964), 100-111.

[14] E. Følner, On groups with full Banach mean value, Math. Scand.
3(1955), 243-254.

[15] B. J. Gardner, Some aspects of T -nilpotence, Paci�c J. Math. 53(1974),
117-130.

[16] B. J. Gardner, Some degeneracy and pathology in non-associative radical
theory, Annales Univ. Sci. Budapest. Sect. Math. 22-23(1979-80), 65-74.

[17] B. J. Gardner, Radical properties de�ned locally by polynomial identi-
ties I, J. Austral. Math. Soc. Ser. A 27(1979), 257-273

[18] B. J. Gardner, A remark on strict radical classes of groups, Acta Math.
Acad. Sci. Hungar. 38(1981), 61.

[19] B. J. Gardner, Radical properties de�ned by the absence of free subob-
jects, Annales Univ. Sci. Budapest. Sect. Math. 25(1982), 53-60.

17



[20] B. J. Gardner, Radicals and varieties, Colloq. Math. Soc. János Bolyai
38(1985), 93-133.

[21] B. J. Gardner, Radical Theory, Harlow: Longman, 1989.

[22] B. J. Gardner, Strict radicals and endomorphism rings, Acta Math.
Hung. (to appear).

[23] B. J. Gardner and R. Wiegandt, Radical Theory of Rings, New York:
Marcel Dekker, 2004.

[24] V. S. Guba, A �nitely-generated complete group (in Russian), Izv. Akad.
Nauk SSSR Ser. Mat. 50(1986), 883-924.

[25] G. Havas, Commutators in groups expressed as products of powers,
Comm. Algebra 9(1981), 115-129.

[26] Tah-kai Hu, Locally equational classes of universal algebras, Chinese J.
Math. 1(1973), 143-165.

[27] I. M. Isaacs, Algebra A graduate Course, Paci�c Grove: Brooks/Cole,
1993.

[28] N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer.
J. Math. 67(1945), 300-320.

[29] A. I. Kornev, Complete radicals of some group rings, Siberian Math. J.
48(2007), 857-862.

[30] A. I. Kornev and T. V. Pavlova, Characterization of one radical of group
rings over �nite prime �elds, Siberian J. Math. 45(2004), 504-510.

[31] A. Kurosch, Eine Verallgemeinerung des Jordan-Hölderschen Satzes,
Math. Ann. 11(1935), 13-18.

[32] A. G. Kurosh, Radicals of rings and algebras, Colloq. Math. Soc. János
Bolyai 6(1971), 297-314.

[33] A. G. Kurosh, Radicals in the theory of groups, Colloq. Math. Soc. János
Bolyai 6(1971), 271-296.

[34] F. W. Levi, Groups in which the commutator operation satis�es certain
algebraic conditions, J. Indian Math. Soc. 6(1942), 87-97.

[35] J. Levitzki, Prime ideals and the lower radical, Amer. J. Math. 73(1951),
25-29.

18



[36] N. H. McCoy, Prime ideals in general rings, Amer. J. Math. 71(1949),
823-833.

[37] L. M. Martynov, On primary and reduced varieties of monoassociative
algebras, Siberian Math. J. 42(2001), 91-98.

[38] K. Murata, On nilpotent-free multiplicative systems, Osaka Math. J.
14(1962), 53-70.

[39] B. H. Neumann, H. Neumann and P. M. Neumann, Wreath products
and varieties of groups, Math. Z. 80(1962), 44-62.

[40] J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math.
13(1929), 73-116.

[41] D. V. Osin, Elementary classes of groups, Math. Notes 72(2002), 84-93.

[42] V. M. Petrogradsky, Yu. P. Razmyslov and E. O. Shishkin, Wreath prod-
ucts and Kaluzhnin-Krasner embedding for Lie algebras, Proc. Amer.
Math. Soc. 135(2007), 625-636.

[43] R. E. Phillips and C. R. Combrink, A note on subsolvable groups, Math.
Z. 92(1966), 349-352.

[44] B. I. Plotkin, Radical groups, Amer. Math. Soc. Transl. (2)17, 9-28.

[45] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble
Groups, Berlin-Heidelberg-New York: Springer, 1972.

[46] Yu. M. Ryabukhin, Radicals of Ω-groups I (in Russian),Mat. Issled. 3,
vyp. 2(1968), 123-160.

[47] E. Schenkman, The similarity between the properties of ideals in com-
mutative rings and the properties of normal subgroups of groups, Proc.
Amer. Math. Soc. 9(1958), 375-381.

[48] O. Yu. Shmidt, On in�nite special groups (in Russian),Mat.Sb.
8(50)(1940), 363-375.

[49] O. Yu. Shmidt, In�nite solvable groups (in Russian), Mat. Sb.
17(59)(1945), 145-162.

[50] K. K. Shchukin, The RI∗-solvable radical (in Russian), Mat. Sb.
52(94)(1960), 1021-1031.

19



[51] K. K. Shchukin, On the theory of radicals in groups (in Russian), Sibirsk.
Mat. Zh. 3(1962), 932-942.

[52] K. K. Shchukin, On verbal radicals of groups, Kishinevsk. Gosuniv.
Uchenye Zapiski 82(1965), 97-99.

[53] K. K. Shchukin,Approximation by prime groups (in Russian), Studies in
General Algebra, No. 1 (in Russian), Kishinev. Gosuniv., 1968, 110-119.

[54] T. S. Shores, A note on products of normal subgroups, Canad. Math.
Bull. 12(1969), 21-23.

[55] S. Wagon, The Banach-Tarski Paradox, Cambridge, etc.: Cambridge
Uni. Press, 1985.

[56] R. B. War�eld, Nilpotent Groups, Berlin-Heidelberg-New York:
Springer, 1976.

20


