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All rings in this talk are associative but we do

not assume that each ring has an identity ele-

ment. By Z we denote the ring of integers and

by N the set of positive integers. Moreover, by

P we denote the set of all prime integers.

An associative ring R is called filial if A�B�R

implies A�R for all subrings A, B of R.

Problem of describing filial rings was raised by

Szász in [10]. The problem have been studied

by various authors, namely, Andruszkiewicz [1],

[2], [3], [4], Eherlich [5], Filipowicz, Puczy lowski

[6], [7] Sands [9], Veldsman [11] and others.
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In [2] the complete classification and the method

of construction of commutative filial domains

was given.

The classification was proceeded from consi-

dering the set

Π(R) = {p ∈ P : p is not a unit in R}.

It was shown that for an arbitrary subset Π

of the set of primes, a ring R is a filial inte-

gral domain of characteristic 0 with Π(R) = Π

if and only if R is isomorphic to a subring

of QΠ =
∏
p∈Π Qp of the form K ∩ ZΠ, where

ZΠ =
∏
p∈Π Zp, K is a subfield of QΠ such that

for every a ∈ K, a = (ap)p∈Π we have ap ∈ Zp
for almost all p ∈ Π and Qp is the quotient field

of the p-adic integers Zp.
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A ring R is said to be reduced if it does not

have nontrivial nilpotent elements. We say

that R is a CRF -ring when R is a commu-

tative reduced filial ring.

It follows from Andrunakievich-Ryabukhin The-

orem that every reduced ring is a subdirect sum

of domains. So, it seems that from the classifi-

cation of filial integral domains we can obtain

a structure theorem for CRF -rings. Observe

that the ring R = Z ⊕ Z is not filial, though

Z is filial and R is a subdirect sum of finite

simple fields. Unfortunately, it is not possible

to transfer theorems obtained for filial integral

domains automaticaly to subdirect sums.

Notice that the class of filial rings is not closed

under extensions.
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A ring R is called strongly regular if for every

a ∈ R, a ∈ Ra2. Every strongly regular ring is

reduced and the class S of all strongly regular

rings is a radical class. It is easy to see that if

R 6= 0 is a commutative domain and R is not

a field then S(R) = 0.

Theorem 1. [Theorem 3.4, [6]] The following

conditions on a ring R are equivalent:

(i) R is reduced and left filial,

(ii) R/S(R) is a CRF -ring.

Above theorem gives a strong motivation to

describe the class of S-semisimple commuta-

tive reduced filial rings. (Reduced left filial

rings are left duo i.e., left ideals of such rings

are two-sided). Moreover we have following:

Proposition 2. The class of all CRF -rings is

equal to the class of all extensions of commu-

tative strongly regular rings by S-semisimple

CRF -rings.
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Theorem 1 implies that every strongly regular

ring is filial. Notice that the converse state-

ment does not hold. (ex. Z).

However, we have the following positive result:

R− CRF ⇒ R ∈ Sa.

where Sa denotes the class of all almost strongly

regular rings. Recall that a ring R is almost

strongly regular if for every x ∈ R there exists

n ∈ N such that nx ∈ Rx2. It is easy to see

that Sa forms a radical class.
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For every torsion-free ring R we denote by

Π(R) the set Π(R) = {p ∈ P : pR 6= R}. If R

has an identity then Π(R) = {p ∈ P : p 6∈ R∗} is

an analogue to the set Π(A) introduced in [2].

Let p be a prime number. We denote by Tp the

class of all rings R such that pR+ = R+. Let

us observe that Tp is a radical class. For every

ring R ∈ Tp and for every n ∈ N, pnR = R.

Moreover, if R is torsion-free then Tp(R) =⋂∞
n=1 p

nR.

Remark 3. Let R be a torsion-free ring. For

every prime p, p 6∈ Π(R) if and only if R ∈ Tp.
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In [3] some results concerning relations of the

radical classes Sa, Tp with filiality were ob-

tained. For instance:

Proposition 4. Let R be a torsion-free CRF -

ring. Then for every prime p the ring R/Tp(R)

is reduced.

Theorem 5. Let A and B are non-zero torsion-

free CRF -rings such that Tp(A) = 0 and Tp(B) =

0 for some prime p. Then A⊕B is not filial.

Theorem 6. Let R be a non-zero torsion-free

CRF -ring. Then:

(i) ∃p∈P : Tp(R) = 0⇒ R is a domain.

(ii) p ∈ Π(R)⇒ Tp(R) �1 R.
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Proposition 7. Let R be a torsion-free com-

mutative reduced ring. Then R is filial if and

only if for every x ∈ R:

(i) Rx+ Zx = pRx+ Zx for every p ∈ P and

(ii) R ∈ Sa.

Theorem 8. Let R be a torsion-free commu-

tative reduced ring such that Π(R) 6= ∅. Then

R is filial if and only if:

(i) |R/pR| = p for every p ∈ Π(R) and

(ii) R ∈ Sa.

Corollary 9. Let T be a non-empty subset of N
such that for every t ∈ T there exists a torsion-

free CRF -ring Rt such that Π(Rt) 6= ∅. If for

every distinct t, s ∈ T , Π(Rt) ∩Π(Rs) = ∅, then

R =
⊕
t∈T Rt is a torsion-free CRF -ring and

Π(R) =
⋃
t∈T Π(Rt).
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Proposition 7 allows to prove following two im-

portant theorems:

Theorem 10. [Theorem 2.1, [4]] Every torsion-

free, CRF -ring is an essential ideal in some

torsion-free, CRF -ring with an identity.

Theorem 11. [Theorem 4.4, [4]] Let Π be an

arbitrary nonempty subset of P. Then a ring R

is an S-semisimple CRF -ring with identity, such

that Π(R) = Π if and only if R is isomorphic to

a subring of QΠ of the form K ∩ZΠ where K is

the unique strongly regular subring of QΠ with

the same identity, such that for every a ∈ K,

a = (ap)p∈Π, we have ap ∈ Zp for almost all

p ∈ Π.
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Theorem 12. Given a ring R with an identity

element, the following conditions are equiva-

lent:

(1) R is a noetherian S-semisimple CRF -ring.

(2) R ∼=
⊕n
i=1Di, where Di is a filial integral

domain of characteristic 0, which is not a field

for every i ∈ {1,2, . . . , n} and Π(Di)∩Π(Dj) = ∅
for i 6= j.

Theorem 13. The following conditions on a

ring R are equivalent:

(1) R is a noetherian S-semisimple CRF -ring.

(2) R ∼=
⊕n
i=1miDi, where Di is a filial integral

domain of characteristic 0, which is not a field,

mi ∈ N for every i ∈ {1,2, . . . , n} and Π(Di) ∩
Π(Dj) = ∅ for i 6= j.
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Theorem 14. The following conditions on a

ring R are equivalent:

(1) R is a noetherian CRF -ring.

(2) R ∼=
(⊕k

j=1 Fj
)
⊕
(⊕n

i=1miDi
)
, where Di

is a filial integral domain of characteristic 0,

which is not a field, mi ∈ N for every i ∈
{1,2, . . . , n} and Π(Di) ∩ Π(Dt) = ∅ for i 6= t

and Fj is a field for every j ∈ {1,2, . . . , k}.

Theorem 15. The following conditions on a

ring R are equivalent:

(1) R is a finitely generated CRF -rings.

(2) R ∼=
(⊕k

j=1 Fj
)
⊕
(⊕n

i=1miDi
)

where Di
is a finitely generated subring of Q for every

i ∈ {1,2, . . . , n} and Π(Di)∩Π(Dt) = ∅ for i 6= t

and Fj is a finite field for every j ∈ {1,2, . . . , k}.
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Let K be a subring of QΠ with the same iden-

tity. Take any a ∈ K. Let us denote by

supp(a) the set {p ∈ Π : ap 6= 0}. Then BK =

{supp(a) : a ∈ K} is a boolean algebra.

For every Y ⊆ Π we define χY = (ap)p∈Π ∈ ZΠ

to be:

ap =

{
0 if p /∈ Y
1 if p ∈ Y . (1)

Lemma 16. Let Π be an arbitrary nonempty

subset of P. Let K be a subring of QΠ with

the same identity. Then K is a strongly regular

ring if and only if for every a ∈ K exists b ∈ K
such that ab = χsupp(a). In particular if K is

a strongly regular ring, then χY ∈ K for every

Y ∈ BK.
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Lemma 17. Let Π be an arbitrary nonempty

subset of P. Let K be a strongly regular sub-

ring of QΠ with the same identity such that for

every a ∈ K, a = (ap)p∈Π, we have ap ∈ Zp for

almost all p ∈ Π. Put S = K ∩ ZΠ. Then:

(1) every ideal J of K is of the form J = {1
ni :

i ∈ J ∩ S, n ∈ N},

(2) if S is noetherian, then K is also noethe-

rian,

(3) S contains a nonzero ideal which is a do-

main, if and only K contains a nonzero ideal

which is a domain.
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Theorem 18. Let Π be an arbitrary nonempty

subset of P. Then R is an S-semisimple CRF -

ring with an identity without ideals which are

domains, such that Π(R) = Π if and only if R

is isomorphic to a subring of QΠ of the form

K ∩ ZΠ where K is the unique strongly regular

subring of QΠ with the same identity, such that

for every a ∈ K, a = (ap)p∈Π, we have ap ∈ Zp
for almost all p ∈ Π and boolean algebra BK is

atom-free.

Theorem 19. R is an S-semisimple CRF -ring

without ideals which are domains if and only

if R is isomorphic to some essential ideal of

a ring of the form K ∩ ZΠ where K is the

unique strongly regular subring of QΠ with the

same identity, such that for every a ∈ K, a =

(ap)p∈Π, we have ap ∈ Zp for almost all p ∈ Π

and boolean algebra BK is atom-free.
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Example 20. Let p be any prime number. Let

Ai,k = {pit + k : t ∈ N} for i ∈ N0 and k ∈
{0,1, . . . , pi − 1}. Let

D =


n⋃

j=1

Xj : n ∈ N

 .
It is easy to see that for i1 ≤ i2

Ai1,k1
∩Ai2,k2

=

{
Ai2,k2

if k1 ≡ k2 mod pi1

∅ if k1 6≡ k2 mod pi1,

So every element of D can be written as a

disjont sum of sets Ai,k. It means that if X,Y ∈
D then X ∩ Y ∈ D. Next it is also clear that

A′i,k = N\Ai,k =
⋃
j∈{0,1,...,pi−1},j 6=kAi,j ∈ D. So

D is a field of sets. Of course for every Ai,k,

and for every j > i we have Ai,k ) Ai,j.
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Example 21 Let Π = {p1, p2, . . . } be any infi-

nite subset of prime numbers. Let D be any

attom-free boolean algebra of subsets of Π. In

QΠ we define

K = [aχY : Y ∈ D,0 6= a ∈ Q]. (2)

It is easy to see that

K = 〈aχY : Y ∈ D,0 6= a ∈ Q〉. (3)

Hence every nonzero d ∈ K can be written in

the form

d = a1χY1
+ a2χY2

+ · · ·+ akχYk. (4)

where 0 6= ai ∈ Q, ∅ 6= Yi ∈ D for every i ∈
{1,2, . . . , k} and Yi ∩ Yj = ∅ for i 6= j and

supp(d) = Y1 ∪ Y2 ∪ · · · ∪ Yk.
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We claim that K is strongly regular. Let d be

as in (4). Put d′ = a−1
1 χY1

+ a−1
2 χY2

+ · · · +
a−1
k χYk. Obviously d′ ∈ K, moreover d · d′ =

χsupp(d) ∈ K. So by Lemma 16 K is strongly

regular subring of QΠ. Clearly K ∩ ZΠ 6= {0}.
It is easy to see that BK is atom-free, so The-

orem 18 implies that K ∩ ZΠ is a nonzero S-

semisimple CRF -ring, without an ideal which

is a domain. Moreover Π(K ∩ ZΠ) = Π.
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Question 1 Describe extensions of commu-

tative strongly regular rings by S-semisimple

CRF -rings.

Question 2 Is every filial ring an ideal in some

filial ring with an identity?

Question 3 Describe commutative filial rings.
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