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a b s t r a c t 

The problem of underfitting and overfitting in machine learning is often associated with a bias-variance 

trade-off. The underfitting most clearly manifests in the tree-based inducers when used to classify the 

gene expression data. To improve the generalization ability of decision trees, we are introducing an evo- 

lutionary, multi-test tree approach tailored to this specific application domain. The general idea is to 

apply gene clusters of varying size, which consist of functionally related genes in each splitting rule. 

It is achieved by using a few simple tests that mimic each other’s predictions and built-in information 

about the discriminatory power of genes. The tendencies to underfit and overfit are limited by the multi- 

objective fitness function that minimizes tree error, split divergence and attribute costs. Evolutionary 

search for multi-tests in internal nodes, as well as the overall tree structure, is performed simultaneously. 

This novel approach called Evolutionary Multi-Test Tree (EMTTree) may bring far-reaching benefits 

to the domain of molecular biology including biomarker discovery, finding new gene-gene interactions 

and high-quality prediction. Extensive experiments carried out on 35 publicly available gene expression 

datasets show that we managed to significantly improve the accuracy and stability of decision tree. Im- 

portantly, EMTTree does not substantially increase the overall complexity of the tree, so that the patterns 

in the predictive structures are kept comprehensible. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In machine learning, generalization often refers to the ability of

a predictive model to match unseen data ( Hastie, Trevor, Tibshi-

rani, Robert, Friedman, 2009 ). If the model matches the training

set well, but fails to predict new instances in the problem area, we

are typically dealing with so-called overfitting. This happens when

the model concentrates on too much detailed information from the

training data, which can occur in the form of noise or accidental

fluctuations, which negatively affects the ability of the models to

generalize. Underfitting is in opposition to overfitting as the un-

derfitted model is not complicated enough and too little focuses

on training data. As a result, it can neither fit the training set nor

generalize new data well. 

Decision trees (DT)s ( Kotsiantis, 2013 ) are one of the main tech-

niques for discriminant analysis in knowledge discovery. Due to

their non-parametric and flexible algorithm, DTs are at some ex-

tent prone to overfitting ( Loh, 2014; Sez, Luengo, & Herrera, 2016 ).

There are also known to be instable, as small variations in the
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raining set can result in different trees and non-repeatable pre-

ictions. While this is an unquestionable advantage when using

ultiple trees, it is a problem when a classifer based on a single

ree is used. Both greater generalization ability and stability can

e improved, for example, by learning multiple models from boot-

trap samples of the training data, but such an ensemble approach

akes the extracted knowledge less understandable. 

This paper tackles the problem of underfitting of DT in the clas-

ification of gene expression data. In such data a ratio of features

o observations is very high, which creates serious problems for

he standard univariate decision trees ( Chen, Wang, & Zhang, 2011;

zajkowski & Kretowski, 2014 ). The learning algorithms may find

ests that perfectly separates the training data, but these splits of-

en correspond to noise. This situation is more likely at intermedi-

te and lower levels of the tree, where the number of instances is

educed with each tree level and may be several orders of magni-

ude smaller than the number of available features. For this reason,

ost of univariate DT inducers produce considerably simple trees

hat successfully classify the training data, but fail to classify un-

een instances ( Grzes & Kretowski, 2007 ). This may lead to under-

tting as a small number of attributes is used in such trees and,

herefore, their models are not complex enough and cause poor

eneralization ( Hastie, Trevor, Tibshirani, Robert, Friedman, 2009 ).

https://doi.org/10.1016/j.eswa.2019.07.019
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t  
he production of larger trees does not solve the problem, because

n case of gene expression, small trees already classify the train-

ng data perfectly. This indicates that one can opt for the issue of

plit complexity, as little can be obtained from larger univariate

Ts with this type of data. 

A gene cluster is a part of a gene family, which is a set ho-

ologous genes within one organism. It is composed of two or

ore genes found within an organism’s DNA that encode for simi-

ar polypeptides, or proteins, which collectively share a generalized

unction. It has been shown ( Yi, Sze, & Thon, 2007 ) that polypep-

ides, or proteins are also encoded by a group of functionally re-

ated genes not a single one. In addition, the use of information

n subgroups of attributes is particularly important in the prob-

em of classification and selection of genomic data ( Kar, Sharma,

 Maitra, 2015; Wong & Liu, 2010 ). Therefore, we believe, that fo-

using on a tree split based on gene clusters rather than a single

ene improves not only classifiers generalization ability but also

rovides interesting patterns that may appear in each multi-tests.

his direction of research is continued in our study. 

The main contribution of the work is a new evolutionary multi-

est tree algorithm called Evolutionary Multi-Test Tree (EMTTree).

t aims to improve single-tree classifiers in context of prediction

ccuracy and stability with a redefined and extended multi-test

plit approach ( Czajkowski, Grze ́s, & Kretowski, 2014 ). In contrast

o existing solutions, we propose a concept of a gene cluster in or-

er to split instances in each non-terminal node of the tree. Each

luster consists of tests that mimic each other’s predictions, and

ach test is an univariate test built on a selected attribute. Novelty

f the EMTTree covers: 

• an evolutionary tree induction as an alternative to the

greedy top-down which was used in our previous works.

Thanks to this global approach we were able to search for

the tree structure and multi-test splits simultaneously, and

resign from the flawed pruning procedure; 
• a new algorithm for searching multi-test splits: specialized

EA in a combination with local optimizations allows search-

ing for most uniform multi-tests with the top-ranked genes;
• introducing gene cluster concept to the multi-test and

adding a new dimension to its structure: information about

the discriminatory power of genes is associated with every

univariate test that constitutes a multi-test; 
• a unique fitness function that focuses on minimizing the

tree error, but not on the tree size, which is the standard

procedure for DT. In addition, we incorporate information on

gene ranking and resemblance of splits in order to prevent

the predictor from underfitting and overfitting to data, espe-

cially in the lower parts of the tree. 

An extensive set of computational experiments using 35 real-

orld gene-expression data sets has shown that the EMTTree solu-

ion now appears to be one of the top decision tree-like classifiers

n the field of gene expression data. 

The paper is organized as follows. The next section provides a

rief background on DTs in the context of gene expression data

nalysis. Section 3 describes the concept of multi-test and the

roposed evolutionary approach. All experiments are presented in

ection 4 and the last section contains conclusions and plans for

uture work. 

. Background 

With the rapid development and popularity of genomic tech-

ology, a large number of gene expression datasets have become

ublicly accessible ( Lazar et al., 2012 ). The availability of these

atasets opens up new challenges for existing tools and algo-
ithms. However, traditional solutions often fail due to high fea-

ures/observations ratios and huge gene redundancy. 

.1. Decision tree 

Decision trees (also known as classification trees) have a long

istory in predictive modeling ( Kotsiantis, 2013 ). The success of the

ree-based approach can be explained by its ease of use, speed of

lassification and effectiveness. In addition, the hierarchical struc-

ure of the tree, where appropriate tests are applied successively

rom one node to the next, closely resembles the human way of

aking decisions. 

DT has a knowledge representation structure made up of nodes

nd branches, where: each internal node is associated with a test

n one or more attributes; each branch represents the test result;

nd each leaf (terminal node) is designed by a class label. Most

f tree inducing algorithms partition the feature space with axis-

arallel hyperplanes. Trees of this type are often called univariate

ecause a test in each non-terminal node usually involves a single

ttribute, which is selected according to a given goodness of split.

here are also algorithms that apply multivariate tests ( Brodley

 Utgoff, 1995 ) based mainly on linear combinations of multiple

ependent attributes. The oblique split causes a linear division of

he feature space by a non-orthogonal hyperplane. DTs, which al-

ow multiple features to be tested in a node, is potentially smaller

han those which are limited to single univariate splits, but have

uch higher computational cost and are often difficult to interpret

 Brodley & Utgoff, 1995 ). 

Induction of optimal DT is known NP-complete problem ( Hyafil

 Rivest, 1976 ). As a consequence, the practical DT learning al-

orithms must be heuristically enhanced. The most popular type

f tree induction is based on a top-down greedy search ( Rokach

 Maimon, 2005 ). It starts with the root node, where the lo-

ally optimal split (test) is searched according to the given mea-

ure of optimality. Then the training instances are redirected to

he newly created nodes and this process is repeated for each

ode until the stop condition is met. In additionally, post-pruning

 Esposito, Malerba, & Semeraro, 1997 ) is usually used after in-

uction to avoid the problem of overfitting to the training data

nd to improve the generalizing power of the predictive model.

he two most popular representatives of top-down DT inducers

re CART ( Breiman, Friedman, Olshen, & Stone, 2017 ) and C4.5

 Quinlan, 1992 ). The CART system generates recursively a binary

ree, and the quality of a split is measured either by the Gini in-

ex or the Twoing criterion. The C4.5 algorithm applies multi-way

plits instead of a typical binary strategy and uses the gain ratio

riterion to split the nodes. Inducing DT through a greedy strat-

gy is fast and generally efficient in many practical problems, but

sually provides locally optimal solutions. 

In order to mitigate some of the negative effects of locally op-

imal decisions, a wide range of meta-heuristics for the introduc-

ion of DT was examined ( Barros, Basgalupp, De Carvalho, & Fre-

tas, 2012; Czajkowski & Kretowski, 2014; 2016 ). They are able to

lobally search for the tree structure and tests in internal nodes.

uch a global induction is of course much more computationally

omplex, but it can reveal hidden patterns that are often unde-

ectable by greedy methods ( Lv, Peng, Chen, & Sun, 2016 ). Different

ecent approaches to improving the predictive performance of de-

ision trees include fuzziness ( Wang, Liu, Pedrycz, & Zhang, 2015 ),

ncertainties ( Cao & Rockett, 2015 ), discretization ( Saremi & Yagh-

aee, 2018 ) or variable selection ( Painsky & Rosset, 2017 ). 

.2. Gene expression data classification with decision trees 

Microarrays and RNA-seq analysis can simultaneously measure

he expression level of thousands of genes within a particular
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mRNA sample. The application of a mathematical apparatus and

computations tools is indispensable here, since gene expression

observations are represented by high dimensional feature vectors.

However, the genomic data is still challenging and there are several

culprits responsible, mainly: (i) Bellmans curse of dimensionality

(too many features); (ii) the curse of dataset sparsity (too few sam-

ples); (iii) the irrelevant and noise genes; (iv) bias from method-

ological and technical factors. Each observation is described by a

high dimensional feature vector with a number of features that

reach into the thousands, but the number of observations is rarely

higher than 100. 

Univariate decision trees represent a white-box approach, and

improvements to such models have considerable potential for ge-

nomic research and scientific modeling of the underlying pro-

cesses. There are not so many new solutions in the literature that

focus on the classification of gene expression data with compre-

hensive DT models. One of the latest proposals is the FDT (Fuzzy

Decision Tree) algorithm ( Ludwig, Picek, & Jakobovic, 2018 ) for

classifying gene expression data. The authors compare FDT with

the classic DT algorithm (J48) on five popular cancer datasets and

have shown some benefits from the use of data uncertainty. Al-

ternative studies are presented in Barros, Basgalupp, Freitas, and

De Carvalho (2014) where the authors propose an evolutionary DT

inducer called HEAD-DT. Detailed experiments carried out on 35

real-world gene expression datasets have shown the superiority of

the algorithm in terms of predictive accuracy compared to well-

known DT systems such as C4.5 and CART. An expert system has

also been proposed to classify gene expression data using a gene

selection by decision tree ( Horng et al., 2009 ). However, existing

attempts have shown that decision tree algorithms often induce

classifiers with inferior predictive performance ( Barros et al., 2014;

Ge & Wong, 2008 ). Current DT-inducing algorithms with their pre-

diction models limited to splits composed from one attribute use

only a fraction of the available information. It results in a tendency

to underfit as their models have a small bias on the training set,

but often fail to classify well the new high-dimensional data. On

the other hand, there are algorithms which apply multivariate tests

( Brown, Pittard, & Park, 1996 ) based mostly on linear combination

splits. However, the main flaws of such systems are huge complex-

ity as well as the biological and clinical interpretation of the output

models is very difficult, if not impossible. 

Nowadays, much more interest is given in trees as sub-learners

of an ensemble learning approach, such as Rotation or Random

Forests ( Chen & Ishwaran, 2012; Lu, Yang, Yan, Xue, & Gao, 2017 ).

These solutions alleviate the problem of low accuracy by averag-

ing or adaptive merging of multiple trees. One of the recent ex-

amples is the multi-objective genetic programming-based ensem-

ble of trees is proposed in Nag and Pal (2016) . The authors present

an integrated algorithm for simultaneous selection of features and

classification. However, when modeling is aimed at understanding

basic environmental processes, such methods are not so useful be-

cause they generate more complex and less understandable models

( Piltaver, Luštrek, Gams, & Martin ̌ci ́c-Ipši ́c, 2016 ). Nevertheless, im-

portant knowledge can still be drawn from ensemble methods, e.g.

to identify reduced sets of relevant variables in a given microarray

( Lazzarini & Bacardit, 2017 ). 

A solution called Multi-Test Decision Tree (MTDT)

( Czajkowski et al., 2014 ) can be placed between one-dimensional

and oblique trees. It uses several one-dimensional tests in

each node, which on the one hand increases the complexity

of the model and on the other hand still allows for relatively

easy interpretation of the decision rules. There were, however,

a few other flaws and limitations of MTDT, which were ad-

dressed and removed with the proposed EMTTree solution, in

particular: 
r  
• the lack of flexibility in the structure of multi-test - the fixed

size of multi-tests in all tree nodes; 
• the limited search space - only a few highest-rated at-

tributes were taken into account when building the multi-

test (performance reasons); 
• the high number of crucial parameters to be defined ad-hoc,

including the size of multi-test, the number of alternative

multi-tests and the homogeneity of multi-tests; 
• greedy top-down induction: meta-heuristic searches

( Barros et al., 2012 ) could be expected to improve clas-

sification accuracy and reveal new patterns in the data. 

This way, the proposed EMTTree solution that can self-adapt its

tructure to the currently analyzed data. The undoubted strength

f our solution is the higher prediction accuracy and improved sta-

ility of the model. The minor weakness of the EMTTree are the

esults of using an evolutionary approach, mainly the slow tree in-

uction time and a number of input parameters that can be ad-

usted. However, the gene expression data are still relatively small

nd as we show in the experimental section, the number of pa-

ameters that need to be tuned is small. 

.3. Concept of multi-test 

The general concept of the multi-test split, marked mt , was in-

roduced for the first time in Multi-Test Decision Tree (MTDT) algo-

ithm ( Czajkowski et al., 2014 ), which induces a DT in a top-down

anner. The main idea was to find a split in each non-terminal

ode that is composed of several univariate tests that branch out

he tree in a similar way. The reason for adding further tests was

hat the use of a single univariate test based on a single attribute

ay cause the classifier to underfit the learning data due to the

ow complexity of the classification rule. Each multi-test consists

f a set with at least one univariate test. One test in the set is

arked as primary test ( pt ), and all remaining tests are called sur-

ogate tests ( st ). The role of surrogate tests is to support the di-

ision of training instances carried out by the primary test with

he use of remaining features. In order to determine the surrogate

ests, we have adopted the solution proposed in the CART system

 Breiman et al., 2017 ). Each surrogate test is constructed on a dif-

erent attribute and mimics the primary test in terms of which and

ow many observations go to the corresponding branches. In the

ajority voting that determines the outcome of the multi-test, the

ndividual weights of each test are equal. This way surrogate tests

ave a considerable impact (positive or negative) on multi-test de-

isions, as they can prevail over the primary test decision. It is also

ossible that a multi-test, without a test with the highest gain ra-

io, can be the most accurate split. 

The experimental evaluation ( Czajkowski et al., 2014 ) showed

 significant improvement in classification accuracy and a reduc-

ion in underfitting compared to popular DT systems. Results from

everal real gene expression datasets suggest that the knowledge

iscovered by MTDT is supported by biological evidence in the lit-

rature and can be easily understood and interpreted. 

Let’s consider a binary classification problem, in which a node

ontains instances from two classes ( ClassA and ClassB ) and in-

tances should be divided into two leaves according to a test. The

ig. 1 a illustrates the possible assign of instances to leaves accord-

ng to the T test performed on a single a attribute. Desired split

hould place the instances from Class A in left leaf and the in-

tances from Class B in right leaf. Each cell represents a single in-

tance with a defined class, and each row shows how instances are

rranged in the leaves after performing the test. From the Fig. 1 a

t is clear that a single T 1 test on the a 1 attribute has the highest

oodness of split, because 13 out of 17 instances are classified cor-

ectly. In a typical system, this test should be selected as a split.
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Fig. 1. Possible division scenarios of instances in a root node into two leaves with 

univariate splits (a) and a multi-test split (b). 

Fig. 2. An example of a multi-test tree (a) and one of its univariate equivalent (b). 
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Fig. 3. The EMTTree process diagram. 
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n the multi-test search, this top test can also be considered as pt .

owever, there may be a problem with finding appropriate surro-

ates, because none of the split outcomes in Fig. 1 a is similar to

he T 1 result. 

This is not obvious at first glance, but within the data in Fig. 1 a,

 better split may be found (see Fig. 1 b). Let’s assume that the T 2 
est on a 2 is the primary test ( pt ). In this case, one of the surro-

ates may be the T 3 test, which divides instances in a similar way

only 4 instances are assigned differently). Additionally, the T 5 test

an also be used in building a multi-test as a surrogate after re-

ersing the relationship between the a 5 attribute and the threshold

marked as ¬T 5 ). Fig. 1 b shows the final prediction for the multi-

est mt consisting of T 2 , T 3 and ¬T 5 . This simple example shows

he concept of multi-test and how combined tests can outperform

he top T 1 test. 

The Fig. 2 a illustrates a possible multi-test decision tree for

he aforementioned problem with a root node composed from the

ests illustrated in Fig. 1 b. Since instances are distributed by major-

ty voting, the multi-test node can be easily extended to a univari-

te tree ( Fig. 2 ). In such a univariate tree, each object is tested no

ore than the size of the multi-test. Of course, the generated uni-
ariate tree is larger, but it is still relatively easy to interpret the

esulting tree. It should also be emphasized that the induction of

uch a univariate tree by a typical decision-making system is very

nlikely because all tests within multi-test perform the split in a

imilar way, which is not common in any known splitting criterion.

. Evolutionary multi-Test tree 

In this section, we present an evolutionary approach to induc-

ng multi-test decision tree. The proposed solution has been inte-

rated into a framework called the Global Decision Tree (GDT). Its

verall structure is based on a typical evolutionary algorithm (EA)

chema ( Michalewicz, 1994 ) with an unstructured population and

enerational selection. The GDT framework can be used to induce

lassification ( Grzes & Kretowski, 2007 ), regression ( Czajkowski &

retowski, 2016 ) and model trees ( Czajkowski & Kretowski, 2014 ).

he process diagram of the EMTTree algorithm is illustrated in

ig. 3 . 

.1. Representation 

The type of EA can be identified by the way in which in-

ividuals in populations are represented. The genetic algorithm

s usually considered when solutions are encoded in a fixed-

ength linear string. Tree-encoding schemes usually imply genetic

rogramming (GP), where the solution encodes data and func-

ions ( Woodward, 2003 ); however, the boundary between different

ypes of EAs is unclear and debatable. DT is a complex tree struc-

ure in which the number of nodes, the type of tests, and even

he number of test outcomes is not known in advance for a given

ataset. Therefore, a tree representation may be more appropriate,

specially if the entire tree is searched in one EA run. In the GDT

ystem, DTs are not specially encoded and are represented in their

ctual form as classification trees. 

The general structure of a multi-test tree is similar to standard

Ts, e.g. C4.5 ( Quinlan, 1992 ). The only difference is that instead of

 single univariate test in each non-terminal node split, EMTTree

ses a multi-test approach. Fig. 4 illustrates an example of tree
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Fig. 4. An example representation of EMTTree . 
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representation of an induced multi-test tree. Each internal node

may have a multi-test with a different number of univariate tests

that form a split. Typical inequality tests with two outcomes are

used, but only on the pre-calculated candidate thresholds ( Fayyad

& Irani, 1992 ). The splitting criterion is guided by a majority vot-

ing mechanism in which all univariate components of the multi-

test have the same weight. To avoid a draw, the number of tests

in the multi-test should be odd. The fact that only univariate tests

are used in multi-test splits ensures that EMTTree can be treated

as an axis parallel DT rather than a typical multivariate one, even

though more than one test exists in each split. This is important in

the context of the later interpretation of the tree. 

In addition, each node stores information about training in-

stances related to the node. This allows the algorithm to perform

more effectively local modifications of the structure and tests dur-

ing the application of genetic operators. 

3.1.1. A new multi-test split 

We define a single multi-test mt as a gene cluster in which

genes are tightly linked and could participate in a common path-

way. The measure of similarity denoted as resemblance ( r ij ) for a

multi-test located in the i th node ( mt i ) between the j surrogate

test ( st ij ) and the primary test ( pt i ) is the number of observations

routed in the same way to all observations in the node: 

r i j = 

| X st i j 
| 

| X i | , (1)

where | X st i j 
| is the number of instances routed by st ij in the same

way as pt i , and ( X i ) is the set of instances in the i -th node. In case

of a binary classification problem, we also consider surrogate tests,

which direct instances in the opposite way to their primary test.

In the case of such tests, we reverse the relation between the at-

tribute and the interval midpoint and recalculate the score. 

r i j = 

{ | X st i j 
| 

| X i | , if | X st i j 
| ≥ 0 . 5 ∗ | X i | 

1 − | X st i j 
| 

| X i | , otherwise . 
(2)

The EMTTree algorithm requires ranks of all genes from the

dataset as its input. These ranks can be perceived as knowledge

of discrimination power of each gene and later applied in: 

• population initialization; 
• multi-test searches and evaluation; 
• different variants of genetic operators and fitness. 

Ranking can be calculated with any algorithm that assigns

ranks to each attribute according to some importance crite-

rion. In our research, we used the Relief-F ( Robnik-Šikonja &

Kononenko, 2003 ) algorithm, which is commonly applied in fea-

ture selection of gene expression data ( Hira & Gillies, 2015 ). If nec-

essary, the list of ranked genes submitted to the EMTTree can also

be manually modified, for example, to focus on biomarker genes

for a given disease. 
Let the a ij attribute be the j th attribute used in the i th multi-

est. Then the C ( a ij ) function returns the cost of the attribute (gene)

ased on the selected ranking. The values returned by the C func-

ion range from 0 and 1, while 0 corresponds to the highest ranked

ene and 1 is equal to the worst ranked gene. It should be noted

hat at this step no attributes are automatically excluded from the

ataset, so the EMTTree solution can work on all available genes. In

his way, the algorithm is able to find interesting relationships also

n low ranked genes. This would be not possible if the standard

eature selection was applied as it takes place in most studies. 

.2. Initialization 

In general, an initial population should be randomly generated

n order to ensure sufficient diversity and cover the whole range

f possible solutions. Due to the large search space, the use of

reedy heuristics in the initialization phase is often considered as a

ay of reducing computation time. The disadvantage of this strat-

gy is that EA can be trapped in local optima. Therefore, while

reating the initial population, a good trade-off between a high

egree of heterogeneity and relatively short computation time is

sually desirable. In the GDT system, in order to maintain a bal-

nce between exploration and exploitation, initial individuals are

reated by using a simple top-down algorithm with randomly se-

ected sub-samples of original training data (10% of data, but not

ore than 500 examples). 

.2.1. Building a multi-test split 

In each non-terminal tree node, the EMTTree system divides the

raining instances that reach this particular point. The algorithm

or creating a new multi-test mt i works as follows. First, the at-

ribute for the primary pt i test is selected. Due to a large number

f possible genes, we have applied an exponential ranking selec-

ion ( Blickle & Thiele, 1996 ) to more often include top genes from

he data. For the selected attribute a list of all candidate thresh-

lds is created and sorted according to their gain ratio. Then, the

lgorithm draws pt i from the list using exponential ranking selec-

ion, thanks to which even low-ranked thresholds may appear in

he split. 

Next, a random even number (default: j < 8) of the st ij surro-

ate tests is created, each on a different attribute. The procedure

or searching a surrogate test attribute is analogous to the pt i test,

ut a threshold is chosen in a slightly different way. The list of

andidate thresholds for the selected attribute is sorted by resem-

lance ( r ) to pt i . The algorithm uses the ranking selection to find

he st ij surrogate tests in such a way that it is more likely to select

ests that branch instances like pt i . 

.3. Genetic operators 

In order to preserve genetic diversity, the GDT system applies

wo specialized genetic meta-operators corresponding to the clas-

ical mutation and crossover. Both operators have an influence on

he tree structure and the multi-tests in the non-terminal nodes.

hey are applied with a given probability to the tree (the default

alue is 0.8 for mutation and 0.2 for cross-over). Effective use of

ny operator makes it necessary to relocate the learning instances

etween parts of the tree rooted in modified nodes. All mutation

nd crossover variants are part of the GDT framework described in

etail in Czajkowski and Kretowski (2014) and Czajkowski and Kre-

owski (2016) . In this section we include a brief listing of genetic

perators used in EMTTree, however, for in-depth description, ap-

lication and probability of use, please refer to our previous work

 Czajkowski & Kretowski, 2014 ). 
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.3.1. Crossover 

Each crossover begins with a random selection of two individ-

als to be affected. The next step is to choose random positions

nodes) in both individuals. Depending on the recombination vari-

nt, the selected nodes can: 

• exchange the subtrees starting with randomly selected

nodes; 
• exchange of multi-tests related to randomly selected internal

nodes; 
• duplicate the subtrees with high accuracy and replace the

nodes with a high classification error (asymmetric crossover

( Czajkowski & Kretowski, 2014 )). 

In the last variant, an additional mechanism is used to decide

hich node will be affected. The algorithm ranks all tree nodes

n both individuals according to their classification accuracy. The

robability of selection is proportional to the rank in a linear man-

er. Nodes, for example, with a small classification error, per in-

tance, are more likely to be donors, while weak nodes (with a

igh classification error) are more likely to be replaced by donors

and become a recipient). We also allow receiver nodes to be re-

laced by the subtree that starts in the donor node of the best

ndividual. Only one individual is affected in such recombination. 

.3.2. Mutation 

The mutation operator starts with a random selection of the

ode type (equal probability of selecting a leaf node or an internal

ode). A ranking list of nodes of the selected type is then created

nd once again a mechanism analogous to the ranking selection is

sed to decide which node will be affected. Depending on the type

f node, the ranking takes into account: 

• location (level) of the inner node in the tree - it is obvious

that the modification of the test in the root node affects the

whole tree and has a big impact, while the mutation of the

inner node in the lower part of the tree has only a local im-

pact. Therefore, the internal nodes in the lower parts of the

tree are mutated with a higher probability; 
• the number of misclassified objects - nodes with a higher

error, per instance, are more likely to be mutated. Moreover,

pure nodes (nodes with all instances from one class) are not

mutated. 

Modifications made by the mutation operator depend on the

ode type and include different variants that: 

a) modify the tree structure: 
• prune the internal nodes; 
• expand leaves that contain objects from different classes;
• replace the multi-test in the internal node with a new

one with a random even number of surrogates; 

b) modify the selected multi-test: 
• add 2 additional surrogate tests with different attributes.

Tests with higher r to pt are selected more likely; 
• removes (if possible) 2 surrogate tests. Tests with a lower

r to pt are selected more likely; 
• shift the pt threshold and update all (thresholds and r )

surrogates; 
• replace current pt with a newly created pt on a new at-

tribute and update surrogates; 
• switch within a multi-test pt with one of the randomly

selected st and update surrogates. 

.4. Fitness function 

The evolutionary search process is very sensitive to the cor-

ect definition of the fitness function, which drives the evolution-

ry search process, measuring how good an individual is in terms
f meeting the problem objective. In the context of DT, a direct

inimization of accuracy measured on the learning data usually

eads to an overfitting problem and poor performance on unseen,

est observations due to overgrown trees. In typical top-down in-

uction ( Rokach & Maimon, 2005 ), this problem is partially mit-

gated by performing a stop condition and applying post-pruning

 Esposito et al., 1997 ). In the case of evolutionary induced DT, this

roblem may be controlled by a complexity term incorporated into

he fitness function. 

In general, it is recommended to maximize the accuracy and

inimize the complexity of the output tree ( Czajkowski & Kre-

owski, 2019 ). However, in the case of gene expression data, these

riteria cannot be applied directly. The main reason is the large

isproportion between the number of instances and the attributes,

hich may cause the classifier to underfit the learning data. If

omplexity is minimized or ignored, then the multi-test tree could

ecome a univariate one because such trees often classify the

raining data perfectly. On the other hand, if the fitness func-

ion promotes more complex multi-tests, the output tree will have

vergrown splits in internal nodes, which may be difficult to ana-

yze and interpret. 

Considering our motivations and goals, the desired tree should

ave multi-test splits consisting of several highly ranked tests that

ranch out the nodes in a similar way. Therefore, the proposed fit-

ess function should promote individuals with: 

a) high accuracy on the training set; 

b) relatively large size of multi-tests; 

c) high resemblance of the univariate tests that constitute

multi-tests; 

d) low cost of attributes in multi-tests. 

Therefore, the EMTTree system maximizes the fitness function,

hich has the following form: 

 itness (T ) = Q(T ) + α ∗ R (T ) + β ∗ Cost(T ) , (3)

here: Q ( T ) is the accuracy, R ( T ) is the sum of R ( T i ) in all multi-

ests of the T tree, Cost ( T ) is the sum of the costs of attributes

onstituting multi-tests. The default parameters values are: α = 1 . 0

nd β = −0 . 5 , and more information on tuning these parameters

an be found in the next section (see Section 4.2 ). 

Let us consider an internal T i node of the T tree with mt i multi-

est. Then: 

 (T i ) = 

| X i | 
| X | ∗

| mt i |−1 ∑ 

j=1 

r i j , (4)

here X is a learning set, X i is a set of instances in i th node, and

 mt i | is the size of a multi-test. If a multi-test is composed of a

ingle test, then R ( T i ) equals 0. 

The cost of attributes in the multi-test mt i depends on their

ank, and the number of instances that reach the i node: 

ost(T i ) = 

| X | 
| X i | ∗

| mt i | ∑ 

j=1 

C(a i j ) , (5)

here a ij is the j th attribute of the i th multi-test and C ( a ij ) is

he cost of the a ij attribute. The reason why Cost ( T i ) increases

hen the number of instances in a node decreases is to avoid

he overfitting in the lower parts of the tree, as this will even-

ually limit the size of the multi-test. However, in contrast to

zajkowski et al. (2014) , the maximum number of univariate tests

hat make up a multi-test is not defined. 

.5. Selection, and terminal condition 

The linear ranking selection ( Michalewicz, 1994 ) is used as a

election mechanism. Additionally, in each iteration, one individual
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Table 1 

Summary of 15 gene expression datasets for tuning and 20 for algorithm testing. 

Each dataset is described by its name, the total number of instances (I), attributes 

(A), and classes (C). 

Tuning datasets Testing datasets 

Dataset I A C Dataset I A C 

armstrong-v2 72 2193 3 alizadeh-v1 42 1094 2 

bredel 50 1738 3 alizadeh-v2 62 2092 3 

dyrskjot 40 1202 3 alizadeh-v3 62 2092 4 

garber 66 4552 4 armstrong-v1 72 1080 2 

golub-v2 72 1867 3 bhattacharjee 203 1542 5 

gordon 181 1625 2 bittner 38 2200 2 

khan 83 1068 4 chen 179 84 2 

laiho 37 2201 2 chowdary 104 181 2 

nutt-v3 22 1151 2 golub-v1 72 1867 2 

pomeroy-v2 42 1378 5 lapointe-v1 69 1624 3 

ramaswamy 190 1362 14 lapointe-v2 110 2495 4 

su 174 1570 10 liang 37 1410 3 

tomlins-v2 92 1287 4 nutt-v1 50 1376 4 

yeoh-v1 248 2525 2 nutt-v2 28 1069 2 

yeoh-v2 248 2525 6 pomeroy-v1 34 856 2 

risinger 42 1770 4 

shipp-v1 77 797 2 

singh 102 338 2 

tomlins-v1 104 2314 5 

west 49 1197 2 

Table 2 

Default EMTTree parameters. 

Parameter Value 

Population size 50 individuals 

Crossover rate 20% assigned to the tree 

Mutation rate 80% assigned to the tree 

Elitism rate 2% of the population (1 individual) 

Max generations 10 000 
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with the highest fitness in the current population is copied to the

next one (elite strategy). The evolution ends when the fitness of

the best individual in the population does not improve during the

fixed number of generations (default: 10 0 0). In the case of slow

convergence, the maximum number of generations is also defined

(default: 10 0 0 0), which limits the computation time. 

4. Experimental results 

In this section, we present a detailed experimental analysis to

evaluate the relative performance of the proposed evolutionary

multi-test tree approach. In Section 4.1 we describe algorithms that

will be compared with EMTTree and briefly characterize 35 gene

expression datasets used in the analysis. Section 4.2 shows our

strategy for tuning algorithm parameters. Section 4.3 presents and

discusses the results of the comparison with the original multi-test

tree and other classifiers. Finally, Section 4.4 comments on detailed

EMTTree statistics based on three dataset examples. 

4.1. Algorithms and datasets 

In order to make a proper comparison, we have confronted the

proposed EMTTree solution with the state-of-the-art and the lat-

est algorithms in the literature. Performed experiments encompas

various decision tree inducers: 

a) EMTTree: proposed evolutionary multi-test tree approach; 

b) MTDT ( Czajkowski & Kretowski, 2014 ): original concept of a

multi-test tree used in the top-down inducer; 

c) HEAD-DT ( Barros et al., 2014 ): hyper-heuristic EA for de-

signing decision-tree algorithms tailored to gene expression

datasets; 

d) CART ( Breiman et al., 2017 ): one of the most well known

top-down algorithm for decision-tree induction. We em-

ployed its java version available from the Weka machine

learning toolkit ( Frank, Hall, & Witten, 2017 ) under the name

of SimpleCART; 

e) C4.5 ( Quinlan, 1992 ): popular state-of-the-art tree learner,

Weka implementation under the name of J48; 

f) REPTree: variation of C4.5 that employs the reduced error

pruning. 

We use a set of 35 publicly available gene expression datasets

originally described in de Souto, Costa, de Araujo, Ludermir, and

Schliep (2008) and available at de Souto, Costa, de Araujo, Lud-

ermir, and Schliep (2019) . The data relates to different types or

subtypes of cancer. The authors of HEAD-DT randomly divided 35

datasets into two groups ( Barros et al., 2014 ): parameter optimiza-

tion and experiments ( Table 1 ). We used exactly the same datasets

so we can directly compare their published results with our ap-

proach. Since the datasets were not pre-divided into training and

testing parts, 10-fold cross-validation was applied and an average

score of 50 runs was presented. We have also included information

about the standard deviation. 

4.2. Parameter tuning 

The characteristics of the data for a specific problem domain

may differ, so we have adjusted all the base algorithms (except

HEAD-DT) on 15 gene expression datasets. The results of HEAD-DT

are only cited as the solution has already been tuned using exactly

the same datasets ( Barros et al., 2014 ). 

In the case of the MTDT solution, the size of multi-tests in tree

nodes must be set in advance using the tuning set. The perfor-

mance of the MTDT classifier is tested using six values of the N

parameter (as in the original publication ( Czajkowski et al., 2014 )):
, 3, 5, 7, 9 and 11, which means a maximum number of univari-

te tests in the multi-test. It is worth noting that MTDT with a

ingle test in a multi-test node (N = 1) behaves similarly to the

tandard C4.5 algorithm. Both algorithms use the gain ratio cri-

erion and pessimistic pruning. There is, however, a slight differ-

nce in calculating the exact threshold value, which is described

n Czajkowski et al. (2014) . The best average results on the tuning

atasets were achieved when the maximum size of the multi-test

s 5, so the classifier with this setting denoted as MTDT 5 will be

sed in subsequent experiments. 

As for state-of-the-art solutions (CART, C4.5, REPTree) we

ave tested a large number of parameters as recommended in

uto_WEKA 2.0 ( Kotthoff, Thornton, Hoos, Hutter, & Leyton-Brown,

016 ). For all three cases, the unpruned trees reached the high-

st average prediction performance on 15 datasets. Average classi-

cation accuracy for unpruned trees: CART, C4.5, and REPTree in-

reased compared to the baseline settings by: 0.3%, 1.3% and 3.7%,

espectively. 

Considering that EMTTree is regular generational EA, parame-

ers such as population size, a maximum number of generations,

litism rate, crossover and mutation probability must be selected

efore evolution. Table 2 contains a brief listing of the main pa-

ameters that have been experimentally evaluated and described in

etails in our previous publications on GDT framework ( Czajkowski

 Kretowski, 2014; 2016 ). 

In the EMTTree algorithm, however, there are two additional

arameters that should be experimentally tuned. The fitness func-

ion described in Eq. (3) has three objectives: accuracy, the resem-

lance of surrogate tests and cost of attributes. It is clear why the

ccuracy should have highest possible value, but the question that

ay be raised is why R ( T ) is twice as important as Cost ( T ). Let

s consider the general definition of the proposed fitness function
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Fig. 5. Impact of the resemblance: α and cost: β parameters on EMTTree system performance. 

Table 3 

Comparison of EMTTree accuracy to popular decision tree inducers. 

Evolutionary inducers Top-down inducers 

Dataset EMTTree HEAD-DT MTDT 5 CART C4.5 REPTree 

alizadeh-v1 0.91 ± 0.12 0.77 ± 0.11 0.86 ± 0.16 0.67 ± 0.21 0.68 ± 0.23 0.65 ± 0.20 

alizadeh-v2 0.96 ± 0.07 0.88 ± 0.06 0.94 ± 0.10 0.89 ± 0.11 0.91 ± 0.12 0.91 ± 0.11 

alizadeh-v3 0.71 ± 0.13 0.74 ± 0.05 0.71 ± 0.10 0.71 ± 0.18 0.70 ± 0.20 0.71 ± 0.14 

armstrong-v1 0.95 ± 0.08 0.90 ± 0.04 0.93 ± 0.05 0.89 ± 0.09 0.88 ± 0.10 0.91 ± 0.09 

bhattacharjee 0.90 ± 0.06 0.90 ± 0.03 0.90 ± 0.03 0.90 ± 0.08 0.89 ± 0.06 0.85 ± 0.07 

bittner 0.70 ± 0.27 0.61 ± 0.09 0.62 ± 0.16 0.62 ± 0.21 0.61 ± 0.20 0.63 ± 0.24 

chen 0.88 ± 0.07 0.85 ± 0.04 0.87 ± 0.06 0.85 ± 0.08 0.85 ± 0.08 0.83 ± 0.09 

chowdary 0.95 ± 0.06 0.95 ± 0.03 0.94 ± 0.05 0.93 ± 0.07 0.93 ± 0.07 0.92 ± 0.07 

golub-v1 0.95 ± 0.07 0.88 ± 0.03 0.93 ± 0.04 0.85 ± 0.10 0.86 ± 0.12 0.89 ± 0.11 

lapointe-v1 0.73 ± 0.18 0.66 ± 0.08 0.72 ± 0.16 0.70 ± 0.16 0.70 ± 0.17 0.71 ± 0.16 

lapointe-v2 0.69 ± 0.11 0.62 ± 0.05 0.72 ± 0.11 0.63 ± 0.13 0.63 ± 0.14 0.60 ± 0.13 

liang 0.93 ± 0.11 0.89 ± 0.09 0.92 ± 0.12 0.78 ± 0.18 0.83 ± 0.21 0.83 ± 0.17 

nutt-v1 0.54 ± 0.20 0.53 ± 0.08 0.54 ± 0.20 0.54 ± 0.23 0.56 ± 0.20 0.55 ± 0.22 

nutt-v2 0.87 ± 0.09 0.84 ± 0.08 0.80 ± 0.22 0.80 ± 0.26 0.77 ± 0.28 0.80 ± 0.26 

pomeroy-v1 0.83 ± 0.18 0.88 ± 0.08 0.74 ± 0.21 0.82 ± 0.23 0.75 ± 0.21 0.73 ± 0.22 

risinger 0.64 ± 0.20 0.58 ± 0.15 0.60 ± 0.24 0.53 ± 0.19 0.50 ± 0.19 0.51 ± 0.24 

shipp-v1 0.86 ± 0.12 0.91 ± 0.05 0.79 ± 0.12 0.76 ± 0.12 0.76 ± 0.14 0.81 ± 0.14 

singh 0.89 ± 0.09 0.78 ± 0.04 0.76 ± 0.16 0.79 ± 0.13 0.80 ± 0.12 0.77 ± 0.12 

tomlins-v1 0.66 ± 0.14 0.59 ± 0.07 0.64 ± 0.10 0.60 ± 0.14 0.59 ± 0.14 0.61 ± 0.13 

west 0.86 ± 0.11 0.89 ± 0.08 0.82 ± 0.14 0.87 ± 0.15 0.88 ± 0.15 0.82 ± 0.15 

average 0.82 ± 0.12 0.78 ± 0.07 0.79 ± 0.13 0.76 ± 0.15 0.75 ± 0.16 0.74 ± 0.15 
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resented in Eq. (3) . The role of parameters α and β is to control

he relative importance of each objective. Fig. 5 shows the parame-

er tuning experiment varying α and - β within {0.0, 0.25, 0.5,0.75,

.0, 1.25, 1.5, 1.75, 2.0}. To select the best value of α and β we used

5 sets of gene expression data belonging to parameter optimiza-

ion group (tuning data in Table 1 ). The aim of the experiment is

ot to optimize the parameters for a given dataset, but to find ro-

ust values that generally work well in the domain. We then used

hese founded values of α and β to evaluate the generalizing abil-

ty of the fitness function in the new datasets (testing datasets in

able 1 ). 

.3. Comparison of EMTTree to popular decision trees 

This section compares EMTTree to the popular decision tree in-

ucers described in Section 4.1 on 20 gene expression datasets be-

onging to the experiment group ( Table 1 ). The results represented

y classification accuracies and standard deviations are shown in

able 3 and the highest accuracy for each dataset is bold. 

Statistical analysis using the Friedman’s test showed that there

re significant statistical differences between algorithms (signifi-

ance level is equal to 0.05, P -value < 0.0 0 04, F -statistic = 22.37).
ccording to Dunn’s multiple comparison test (significance level

f 0.05) EMTTree managed to significantly outperform all tested

tate-of-the-art decision tree solutions: CART, C4.5, and REPTree.

o statistical differences were observed for HEAD-DT and MTDT 5 .

e believe this is a good result, especially considering that the

unns test is the most conservative option (less likely to find a

ignificant difference) among all multiple comparison procedures

 Demsar, 2006 ). In addition, it should be noted that there are

o other significant differences between algorithms, e.g. between

EAD-DT and CART/C4.5/REPTree. 

Table 4 illustrates the size of the induced trees. We can see

hat EMTTree on average induces smaller trees than its competi-

ors. However, the overall complexity of EMTTree is higher because

nstead of using a single univariate test in each non-terminal node,

s in the other systems, the proposed algorithm applies multi-tests

ith about 5 univariate tests within each split. In this way, EMT-

ree induces trees that are about 2.5 times more complex than

tate-of-the-art top-down induced systems (if we compare the to-

al number of univariate tests) but smaller than MTDT 5 . Unfortu-

ately, in the publication ( Barros et al., 2014 ) there is no infor-

ation about the sizes of trees induced by HEAD-DT solution. It

hould be noted, that the tuned parameters for CART, C4.5 and
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Table 4 

Comparison of EMTTree complexity with other classifiers. 

Dataset 

EMTTree MTDT 5 CART C4.5 REPTree 

nodes × MT nodes × MT nodes nodes nodes 

alizadeh-v1 2.1 × 2.9 3.5 × 5.0 5.0 5.0 5.0 

alizadeh-v2 3.2 × 5.9 3.0 × 5.0 5.0 5.0 5.0 

alizadeh-v3 6.3 × 4.9 5.6 × 5.0 9.0 9.0 9.0 

armstrong-v1 2.1 × 7.2 2.7 × 5.0 3.8 3.8 3.8 

bhattacharjee 7.4 × 6.9 8.8 × 5.0 12.2 11.3 12.0 

bittner 2.4 × 3.6 3.9 × 5.0 5.1 5.0 5.0 

chen 3.3 × 9.4 14.0 × 5.0 13.4 17.1 15.0 

chowdary 2.0 × 10.8 4.8 × 5.0 5.1 5.9 7.6 

golub-v1 2.0 × 3.1 3.2 × 5.0 4.6 4.6 4.6 

lapointe-v1 5.9 × 3.5 7.0 × 5.0 9.6 10.2 9.3 

lapointe-v2 10.7 × 3.4 13.4 × 5.0 16.9 18.7 17.1 

liang 4.0 × 1.2 3.0 × 5.0 5.0 5.0 5.0 

nutt-v1 6.8 × 3.4 6.9 × 5.0 10.5 9.7 10.7 

nutt-v2 2.0 × 8.7 3.1 × 5.0 4.4 4.4 4.4 

pomeroy-v1 2.1 × 2.9 3.9 × 5.0 3.2 4.0 3.4 

risinger 5.4 × 3.0 6.2 × 5.0 8.6 8.6 8.8 

shipp-v1 2.1 × 9.8 5.7 × 5.0 7.2 9.4 7.1 

singh 2.1 × 9.1 10.2 × 5.0 9.5 11.0 10.3 

tomlins-v1 11.5 × 3.8 12.2 × 5.0 18.8 18.2 18.4 

west 2.1 × 6.3 4.2 × 5.0 4.7 4.7 4.7 

average 4.2 × 5.2 6.3 × 5.0 8.1 8.5 8.3 
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REPTree algorithms include using unpruned trees in order to im-

prove classification accuracy. The average tree sizes for pruned

CART, C4.5 and REPTree systems with default parameters are equal

5.4, 8.1 and 4.3 respectively. 

Given that traditional DT systems induce relatively very small

trees, we believe that our goal has been achieved as such an in-

crease in complexity does not strongly affect the comprehensibil-

ity of the output tree. In addition, a multi-test that acts as a gene

cluster can be biologically meaningful and interesting on its own.

In the following case study, we will examine whether the discov-

ered genes from the classifier model are supported by biological

evidence in the literature. 

As we argue at the beginning of the article, the underfitting is

one of the reasons why traditional tree inducers fail to effectively

classify the gene expression data. Underfitting to the data is caused

by oversimplified rules generated from the output trees, and the

results clearly indicate that the application of multi-tests improves

prediction accuracy. Table 3 shows that EMTTree is the most sta-

ble, with no occasional heavy failures, which is in contrast to all

other tested solutions. EMTTree has achieved, on average over 20

datasets, the highest classification accuracy: more than 6% higher

than state-of-the-art solutions and 4% higher than the latest algo-

rithm (HEAD-DT) designed for gene expression data. 

When evaluating an algorithm only in terms of predictive per-

formance (ignoring the interpretability of the classification model),

ensemble methods such as Random Forests (RF), Bagging (BG) or

Adaboost (ADA) are usually considered to be the state-of-the-art

classification algorithms for gene expression data and generally

outperform standard single-tree approaches. To give just an idea

of the level of predictive performance that can be obtained for

our data, we carry out additional tests using the WEKA toolkit

( Frank et al., 2017 ). Among ensembles, RF managed to achieve the

best average accuracy (0.85 ± 0.12) and is significantly better than

all competitors, including BG (0.78 ± 0.13) and ADA (0.81 ± 0.14).

Statistical analysis showed that only EMTTree is not statistically

worse than RF. In addition, the proposed solution, despite the

lower average accuracy compared to RF, managed to outvote (or

be equal) in 10 of the 20 tested datasets. It should be noted, how-

ever, that ensemble classifiers generate more complex predictive

models, which are more difficult to analyze and interpret. 

Finally, the use of EA entails higher calculation costs than clas-

sical procedures. The average induction time for EMTTree ranged
rom one to several minutes (an average equals 12 min) for each

ataset on a typical PC (Intel Core I5, 4GB RAM). The execution of

he EMTTree solution, however, on test instances is very fast. As

e have shown in our previous work ( Jurczuk, Czajkowski, & Kre-

owski, 2017 ), it is easy to speed up our algorithm even hundreds

f times using the GPGPU approach. In addition, gene expression

ata do not really require real-time decision-making, so the com-

utational time is usually less irrelevant. 

.4. Case study 

In this section, we would like to discuss more details of

he EMTTree results on three representative datasets: Alizadeh-

2, Liang and Singh. There are two reasons why these particular

atasets were selected. Firstly, they all are very different in term

f the number of instances, attributes, and classes. Secondly, the

rees induced by the EMTTree system are also different in term of

ree size and the multi-test size. 

In the following figures ( 6 –9 ), we want to show wherever the

ulti-test and the cost information affect the basic statistics of the

est individual founded so far in the evolution. We track the fol-

owing statistics: 

• tree size (number of internal nodes); 
• average multi-test size (number of univariate tests in each

internal node); 
• accuracy on the testing set; 
• average resemblance of the multi-tests; 
• average percent of univariate tests within multi-tests built

on top-ranked attributes (top 20 attributes with the highest

rank / lowest cost); 
• average percent of univariate tests within multi-tests built

on low-ranked attributes (attributes with a rank over 200); 

or: 

• EMTTree: proposed system with default parameters; 
• EMTTreeNC: the EMTTree system with no cost information

(cost of each attribute is equal); 
• ETree: the EMTTree system with a single univariate test in-

stead of a multi-test (multi-test size is equal to one). The

algorithm applies only univariate tests in each internal node

and may be considered as an evolutionary version of C4.5

algorithm; 

In Figs. 6–9 the average results (through 50 algorithms runs)

or the best individual in each generation are showed. For all per-

ormed experiments exactly 10 0 0 0 iterations are presented, al-

hough, most of the “action” happens in the first thousands of it-

rations. Accuracy on the training part of the cross-validated set is

ot shown as it achieves 100% in the first 50–100 iterations (ex-

ept Singh dataset in which it takes a few times longer) and might

bscure the figures. In addition, Fig. 10 shows the example of trees

nduced by the EMTTree solution for each dataset. 

Most of recently proposed data mining methods for omics data

enerate complex rules that constrain the process of uncovering

ew biological understanding that, after all, is the ultimate goal of

ata-driven biology. However, it is not enough to simply produce

ood outcomes but to provide logical reasoning just as clinicians

o for medical treatments. That is why, we also have evaluated

he knowledge derived from EMTTree prediction models to check if

t is biologically meaningful. However, it should be noted that ex-

licitly connecting classification results and molecular mechanism

or particular diseases is a major challenge. However, proposed re-

earch anticipates the longer-term goal of translational medicine

y incorporating generated decision rules in delineating candidate

iomarkers. 
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Fig. 6. The performance of the best individual founded so far on Alizadeh-v2 dataset for a) EMTTree, b) EMTTreeNC and c) ETree. 

Fig. 7. The performance of the best individual founded so far on Liang dataset for a) EMTTree, b) EMTTreeNC and c) ETree. 

Fig. 8. The performance of the best individual founded so far on Singh dataset for a) EMTTree, b) EMTTreeNC and c) ETree. 

4

 

g  

p  

u  

d  

B

 

f  

T  

T  

b  

a  

s  

H  

i  

E  

o  

t  

s  

t  

t

 

i  

t  

s  

d  

t  

s  

t  

r  

v  

3  

t  

c  

T

 

s  

F  

d  
.4.1. Alizadeh-v2 dataset 

The Alizadeh dataset ( Alizadeh et al., 20 0 0 ) characterizes the

ene expression patterns of the three most prevalent adult lym-

hoid malignancies: diffuse large B-cell lymphoma (DLBCL), follic-

lar lymphoma (FL) and chronic lymphocytic leukemia (CLL). The

ataset contains 2092 expression profiles for 62 samples: 42 DL-

CL, 9 FL, and 11 CLL. 

Fig. 6 illustrates the statistics for the best individuals found so

ar for three studied algorithms: EMTTree, EMTTreeNC, and ETree.

he EMTTree solution induces the most accurate trees (see Fig. 6 a).

he final size of the tree is found in less than a hundred iterations,

ut the multi-test search required more time. A longer multi-test

djustment is due to a large number of degrees of freedom - its

ize, the resemblance of the tests and the cost of the attributes.

owever, despite multi-test changes, the prediction performance

s stable, which confirms the robustness of trees induced by the

MTTree algorithm. In addition, Fig. 9 a shows the percentage share

f the highest/lower rank attributes in tests. Figs. 6 and 9 a reveal

hat the EMTTree tree uses splits consisting of 5 univariate tests

imilar in more than 90% and based on 85% of the top ranked at-
ributes. Such high-quality multi-tests improves the stability of in-

ernal nodes and thus the whole classifier. 

Fig. 6 b and c illustrate how our solution would work without

ncurring costs (rank of attributes). We see that unlike EMTTree,

he best individual for EMTTreeNC has a similar tree size, but much

maller multi-tests. As the evolution progresses, the classifier re-

uces its complexity and improves the resemblance of the multi-

ests. With the iteration number, the prediction error on a testing

et increases, suggesting that the classifier slowly underfits to the

raining parts of the cross-validated data for which the training er-

or reached zero in less than 100 iterations. In addition, Fig. 9 a re-

eals that the percentage of top attributes in multi-tests is around

0% which is almost 3-times less than in the case of EMTTree. Both

he low complexity of the output tree and the noisy or insignifi-

ant attributes in tests are probably responsible for the poor EMT-

reeNC performance. 

Exactly the same problems as with EMTTreeNC occur for ETree

olution that uses a single univariate test in the split nodes (see

ig. 6 c). After finding in the first 50–100 iterations the best in-

ividual, which perfectly classifies the training data, for the rest
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Fig. 9. Top and low-ranked genes used in the best individual founded so far for a) Alizadeh-v2, b) Liang and c) Singh dataset. 

Fig. 10. An example tree induced by EMTTree for a) Alizadeh-v2, b) Liang and c) Singh dataset. Each classifier predicts perfectly the training and testing parts of the 

cross-validated sets. 
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of the evolution the algorithm searches for the smallest possible

tree. This has a negative effect on the forecasting performance of

the test set, because such a small and simple tree underfits the

training data. Fig. 9 a also shows that in most of the splits the

medium-ranked attributes were chosen (only 12% of the tests used

top-ranked attributes). 

An example EMTTree tree is shown in Fig. 10 a. The accuracy

results for the training and test set for this particular tree are 100%.

We see that a multi-test with 7 tests appears in the root node and

two simple univariate tests in the tree sub-nodes. 

Based on the description of the dataset (GSE60 series) from

GenBank NCBI ( Benson et al., 2018 ) we conducted a thorough ex-

amination of each gene in the context of a possible gene clus-

ter. A search for known marker genes revealed that the proposed

model is supported by biological evidence in literature. Of 9 tests

used in the prediction model, 7 were performed on genes directly

related to lymphoid malignancies. For example, the PCDH9 gene

(#51439) is down-regulated in non-nodal mantle cell lymphoma

and glioblastoma as a result of gene copy number alterations, and

that exogenous expression of PCDH9 could inhibit tumor cell mi-

gration ( Wang et al., 2012 ). Importantly, some root node tests are

part of a gene cluster that focuses on the same mutations e.g.

#701796 and #714453, which is a novel driver alternation IL4R

( Vigano et al., 2018 ) for a distinct subtype of diffuse large B-cell

lymphoma called primary mediastinal large B-cell lymphoma (PM-

BCL). 

4.4.2. Liang 

Glioblastoma multiforme (GBM) is the most common form of

malignant glioma, characterized by genetic instability, intratumoral

histopathological variability, and unpredictable clinical behavior.

The Liang dataset ( Liang et al., 2005 ) contains global gene expres-

sion in surgical samples of brain tumors. Gene expression pro-

filing revealed large differences between normal brain samples
class Normal) and tumor tissues: GBMs and lower-grade oligoden-

roglial (ODG) tumors. 

Results for the Liang dataset are shown in Figs. 7 and 9 b. Again,

he performance of the EMTTree tree clearly outperforms the rest

f the competitors. When comparing the statistics of the best in-

ividuals generated by EMTTree and EMTTreeNC systems ( Figs. 7 a

nd 6 b), a few things can be seen. In contrast to Alizadeh dataset,

MTTreeNC induced this time more complex trees with multi-tests

ore consistent to those in EMTTree. So why the predictive perfor-

ance of the best individual induced by EMTTreeNC is still much

ower than that induced by EMTTree? The answer can be found in

ig. 9 b. We see that the EMTTree solution used around 85% of top

ttributes, while EMTTreeNC only 20%. Surprisingly, the EMTTree

ree also applied some of the low-ranked attributes in the output

odel, which may suggest that they are somehow useful. In the

ase of the traditional univariate tree (ETree) there are no changes

 the classifier underfits to the data ( Fig. 7 c) because of its low

omplexity. 

An example of the EMTTree output tree is illustrated in Fig. 10 b.

e see that the multi-tests can also occur in the lower parts of

he tree, but despite the additional complexity, the classification

rocess is still easy to understand and interpret. In addition, we

an observe that attribute #18222 is used in all the splits, which

ay suggest its importance. To confirm this, we checked in the

CBI dataset series GSE4058 the meaning of #18222 gene sym-

ol, and then reviewed recent publications on significant drivers in

BM. It turned out that the found COL1A2 gene is an identified

ey cancer-related gene and a potential target gene for diagnosing

he glioblastoma ( Long et al., 2017 ). 

.4.3. Singh 

The Singh dataset ( Singh et al., 2002 ) contains gene expres-

ion patterns from 52 prostate tumors (PR) and 50 normal prostate

pecimens (N). The results for the best individuals (see Figs. 8 and
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 c) confirm the discussion and conclusions from the previous case

tudies. An important fact that can be noticed is that the inclu-

ion of the cost of attributes in the evolutionary induction affects

ot only the predictive performance, but also the entire tree struc-

ure. This time our solution ( Fig. 8 a) induces a decision tree with a

omplex multi-test (see Fig. 10 c), while the EMTTreeNC algorithm

uilds a larger tree, but with simple splits ( Fig. 8 b). However, the

rediction performance is still in favor of the tree induced by the

MTTree solution. 

With the NCBI GPL8300 series, we checked what actual genes

re used in the prediction model. We discovered that all 7 genes

pplied in the multi-test seem to be important biomarkers in a

rostate cancer. What’s more, we also checked whether the rules

or these genes are relevant in some way. Of course, the individ-

al test thresholds are not identical to those described in medi-

al research, but in all results, the effect of the tests sign in the

ulti-test: > and ≤ on classification is the same as the effect of

p and down-regulated genes on prostate cancer prediction. For

xample, in the presented prediction model (see Fig. 10 c), if the

SPAN1 gene expression is low (test: #34775 ≤ 112 ), it votes for

he class PR (prostate cancer) and in the literature we may find

hat the decreased expression for the TSPAN1 gene promotes the

rostate cancer progression and is considered a crucial biomarker

 Xu et al., 2016 ). 

. Conclusion 

Achieving high classification accuracy of models for gene ex-

ression datasets is still a major problem for the tree-based induc-

rs. State-of-the-art and modern algorithms that induce univariate

ingle-tree solutions have a tendency to underfit to the training

ata and fail to achieve high accuracy on the unseen instances.

e address this problem through an evolutionary multi-test tree

pproach and have managed to significantly improve the perfor-

ance of decision trees with a slight increase in their complex-

ty. Our solution redefines the concept of multi-test and focuses

n the concept of gene clusters. The proposed evolutionary induc-

ion algorithm for multi-test DT induction enables a global search

or tree structure and multi-tests with various sizes. Additional in-

ormation related to the cost of attributes improves algorithm ro-

ustness and EA convergence to the global optimum. Extensive

xperimental validation performed on 35 publicly available gene

xpression datasets shows that the proposed EMTTree solution is

ignificantly better in terms of prediction performance than state-

f-the-art decision tree inducers. Equal, if not more important, is

he fact that the decisions triggered by EMTTree are still simple

nd can have direct applicability in the field of gene expression

nalysis. 

The knowledge discovered by EMTTree is supported by biolog-

cal evidence in the literature. A biologist can, therefore, benefit

rom this white box approach, as it can produce accurate and bio-

ogically meaningful classification models and reveal new patterns

n biological data. In particular, it may be promising to study multi-

ests in internal nodes in the context of searching for genes form-

ng a possible gene cluster. 

We see many promising directions for future research. In partic-

lar, from the point of view of machine learning, we are focusing

n improving the algorithm efficiency, especially for large data via

PGPU parallelization ( Jurczuk et al., 2017 ). On the other side, we

re currently working with biologists and bioinformaticians to bet-

er understand the rules generated by EMTTree. We also want to

dopt the proposed classification algorithm to work with protein

xpression and metabolic databases as well as any other specific

pplication area. 
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