
Applied Soft Computing 119 (2022) 108503

F

n
b
r
o
p
i

i
t
m
o
i
c
d
b
p
i
a
i

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

GPU-based acceleration of evolutionary induction ofmodel trees
Krzysztof Jurczuk ∗, Marcin Czajkowski, Marek Kretowski
aculty of Computer Science, Bialystok University of Technology, Wiejska 45a, 15-351, Bialystok, Poland

a r t i c l e i n f o

Article history:
Received 9 February 2021
Received in revised form 17November 2021
Accepted 19 January 2022
Available online 29 January 2022

Keywords:
Evolutionary data mining
Decision trees
Regression
GPU parallel computing
Large-scale data

a b s t r a c t

Evolutionary algorithms (EAs) are naturally prone to parallel processing. However, when they are
applied to data mining, the fitness calculations start to dominate and the typical population-based
decomposition limits the parallel efficiency. When dealing with large-scale data, the scalable solution
may become a real challenge. In this article, we propose a GPU-based parallelization of evolutionary
induction of model trees. Such trees are a special case of decision tree (DT) that is designed to
solve regression problems. The evolutionary approach allows not only a robust prediction but also to
preserve the simplicity of DTs. However, the global approach is much more computationally demanding
than state-of-the-art greedy inducers, and thus hard to apply to large-scale data mining directly.
A parallelized induction of model trees (with univariate tests in the internal nodes and multiple
linear regression models in the leaves) requires a carefully designed decomposition strategy. Six GPU-
supported procedures are designed to successively: redistribute, sort and rearrange dataset samples,
next, calculate models and fitness, and finally gather the results. Experimental validation is performed
on real-life and artificial datasets, using various (low- and high-end) GPU accelerators. Results show
that the GPU-supported solution enables time-efficient global induction of model trees on large-scale
data, which until now was reserved for greedy methods. The obtained speedup is very satisfactory
(even up to hundreds of times). The solution is scalable for datasets of different sizes and dimensions.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Big data mining [1], which has become very popular in busi-
ess, industry and science, offers great opportunities but also
rings great challenges. Traditional data mining tools and algo-
ithms must either evolve and adapt to handle large-scale data
r they will be marginalized. For many solutions, some kind of
arallelism is the last resort in order to continue to be relevant
n the world of big data.

Among the various tools and algorithms that can effectively
dentify patterns within data, decision trees (DTs) [2] are one of
he most commonly used machine learning techniques. Despite
ore than 50 years of research on DTs, there are still many
pen issues [3], such as finding locally/globally optimal splits
n internal nodes, right pruning criterion, efficient analysis of
ost-sensitive data and multi-objective optimization. There are
ifferent ways of induction of DTs but commonly they are built
y greedy methods, e.g., in a top-down manner by a recursive-
artitioning strategy. Such an induction is usually fast; however,
t can offer trees only with local, sub-optimal tests [4]. One of the
lternative approaches is the use of evolutionary algorithms (EAs)
n tree induction. The strength of the evolutionary induction is

∗ Corresponding author.
E-mail address: k.jurczuk@pb.edu.pl (K. Jurczuk).
ttps://doi.org/10.1016/j.asoc.2022.108503
568-4946/© 2022 Elsevier B.V. All rights reserved.
global exploration where tree structure, splits in internal nodes
and predictions in leaves are searched simultaneously [5]. As
a result, the generated trees are much simpler and at least as
accurate as the greedy alternatives. Evolutionary induced DTs are
less prone to overfitting, instability to changes in training data
and attribute-selection bias.

The incorporation of EAs into the DT induction allows for effi-
cient solution-space exploration, leading to better solutions than
those induced with traditional methods. However, at the same
time, it brings new challenges. Direct application of evolutionary
DT induction to big data may be hard or even unachievable [5–
7]. Population-based and iterative calculations may simply be too
demanding. The motivation of this paper is to show that this
barrier can be overcome by smart parallel processing in such a
multi-disciplinary approach (Fig. 1). We propose a GPU-supported
solution (called cuGMT) and show experimentally that now the
global approach can be applied to large-scale data mining.

The acceleration of global DT induction has so far been dis-
cussed mainly in the context of classification problems [8,9]. This
paper focuses on model trees and proposes to use a graphics
processing unit (GPU) to boost their induction and deal with
large-scale data. Model trees are one of variants of DTs designed
to solve regression problems. Model trees can be seen as an ex-
tension of the typical regression tree where the constant value in
each leaf is replaced by a linear (or nonlinear) regression function.

https://doi.org/10.1016/j.asoc.2022.108503
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.108503&domain=pdf
mailto:k.jurczuk@pb.edu.pl
https://doi.org/10.1016/j.asoc.2022.108503

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

r
e
I
t
i
a
t
t
c
m
r
t
s
n
a
G
t

Fig. 1. The proposed cuGMT solution combines different areas. Evolutionary
computation is incorporated into a machine learning technique in order to
search globally optimal DTs. To be able to apply it to big data mining, smart
parallel processing is used. It is powered by a GPU that processes datasets as
well as evaluates solutions in subsequent generations.

Fig. 2. A sketch of the proposed GPU-accelerated solution for big data mining.
On the CPU side, the evolutionary flow control remains. On the GPU side,
calculations involving training data are performed. The heavy (training) data is
kept on the GPU side, to reduce the bottleneck of CPU/GPU memory transfers.

In contrast to the regression trees, whose leaves and induction
may resemble the classification approach, the model trees stand
a completely new challenge. They couple tree-based represen-
tation with multiple linear regression models in leaves, which
(along with the evolutionary approach) requires a new, dedicated
parallel algorithm. A straightforward parallelization of models’
calculations (the most time-consuming phase) is to enough to
provide induction time improvement.

We decided to use GPUs as they provide massive parallel
esources and fast memory as well as energy and economic
fficiency [10]. The NVIDIA CUDA framework [11] is applied.
t supports general-purpose computation on GPUs (GPGPU). In
he proposed parallelization, the GPU cores handle computing-
ntensive jobs, such as samples’ redistribution, model generation
nd fitness calculation. The evolutionary flow control is left to
he CPU (see Fig. 2). We decided to keep the training dataset on
he GPU side and send it once before the evolution. This was a
onscious design decision to reduce the bottleneck of CPU/GPU
emory transfers. This forced us to organize most of the dataset-

elated operations on the GPU side (not only directly related with
he regression model calculations but also with searching optimal
plits) as well as to design additional functions that were not
eeded for the CPU implementations. Only the necessary samples
nd information about updated DT parts are sent to the CPU. The
PU side calculations are divided into six parallelized procedures
hat boost the induction of model trees. An obtained acceleration
2

is very satisfactory. It concerns the datasets of different sizes and
dimensions. To the best of our knowledge, this is the first study
on the GPU-based parallelization of global model tree induction.
An alternative attempt can be found in the literature [12]; how-
ever it was a cluster computing acceleration based on a hybrid
MPI+OpenMP approach.

The proposed solution has been deployed in a system called
Global Model Tree (GMT) [13,14]. However, the solution is itself
independent of any framework. The GMT can be used for evolu-
tionary induction of different types of regression and model trees
and was tested in real-life applications, e.g., [15,16]. The main
objectives of this work are to accelerate the global induction of
model trees and enable efficient evolutionary induction on large-
scale data. This way, GMT can be applied to a broader range of
problems, and evolutionary induction of DTs could become more
competitive in terms of computation time to state-of-the-art
greedy inducers.

The next section provides a brief background on DTs, the
GPGPU computing model, and most recent related works. Sec-
tion 3 describes our approach to parallel implementation of evo-
lutionary model tree induction. Section 4 presents the details
of experimental setup and algorithm parameters. Further, the
results of the proposed solution on real-life and artificially gen-
erated datasets are presented and discussed. In the last section,
the paper is concluded and possible future work is outlined.

2. Background

This section provides a general background on decision
(model) trees and their induction. Distributed/parallel approaches
in evolutionary induction and the GPGPU computational model
are also presented. In particular, we focus on GPU-supported
accelerations of DT inducers.

2.1. Decision trees

Decision trees (DTs) represent one of the main knowledge
discovery methods [2]. The hierarchical tree structure, in which
appropriate tests in consecutive nodes are sequentially applied,
closely resembles a human way of decision-making. The success
of tree-based approaches can be explained by their ease of ap-
plication, fast operation and efficacy. Nevertheless, the run-time
of algorithms and memory resources needed to generate DTs
still require improvement to meet ever-growing computational
demands, especially in the context of big data mining.

In the literature, we may find different variants of DTs [3].
They can be grouped according to the type of:

• the problem they are applied to — classification or regres-
sion [17];

• the way they are induced — greedy top-down/bottom-up
induction [18], global induction based on evolutionary ap-
proach [4,5] or swarm intelligence optimization [19];

• the tree structure — different types of internal nodes (uni-
variate, multivariate, mixed) and leaves (class label, constant
value, regression plane: single or multiple linear regres-
sion) [14].

In this paper, we target evolutionary induced univariate trees that
can be applied to regression problems.

2.1.1. Model trees
Decision trees have a knowledge representation structure.

They are built of nodes and branches [3], where each internal
node is associated with a test on one or more attributes (features),
each branch represents the outcome of a test, and each leaf
(terminal node) is designed by a prediction. Most tree-inducing

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

a
j
c
f
c
a
r
i
T
d
v
p
m

m
e
t
f
a
i
a

2

s
h
a
g
b
n
a
r
S
t
t
c
p
o
p

Fig. 3. An illustration of various tree types. At the top, the prediction space is partitioned on successive levels of the tree (starting from the root node). At the
bottom, the divided prediction surfaces (corresponding to each type of decision tree) are shown. The black lines with arrows are the tree branches.
algorithms partition the attribute space with axis-parallel hyper-
planes. Trees of this type are often called univariate because a test
in each non-terminal node usually involves a single attribute.

In classification trees, a class label is assigned to each leaf. Usu-
lly, it is the majority class of all training samples (instances/ob-
ects) that reach that particular leaf. Regression trees may be
onsidered a variant of DTs designed to approximate real-valued
unctions. In the case of the simplest regression tree, each leaf
ontains a constant value, usually an average value of the target
ttribute. A model tree can be seen as an extension of the typical
egression tree [20]. The constant value in each leaf is replaced
n the model tree by a linear (or nonlinear) regression function.
o predict the target value, the new tested sample is followed
own the tree from a root node to a leaf using its attribute
alues making routing decisions at each internal node. Next, the
rediction for the new sample is evaluated based on a regression
odel in the leaf.
Fig. 3 illustrates an example of classification, regression and

odel trees as well as their predicted values. The gray level of
ach region represents a different class label (for a classification
ree), while the height corresponds to the value of the prediction
unction (regression and model trees). Although regression trees
re not as popular as classification trees, they are highly compet-
tive with other machine learning algorithms [21] and are often
pplied to real-life problems [22,23].

.1.2. Induction of decision trees
Inducing an optimal DT is known as NP-complete [24]. Con-

equently, practical decision-tree learning systems are based on
euristics such as greedy algorithms where locally best splits
re made in each node (a test is selected according to a given
oodness of split). The most popular tree induction method is
ased on the top-down approach [25]. It starts from the root
ode, where the best split is searched. Next, the training samples
re redirected to the newly created subnodes and this process is
epeated for each subnode until some stopping-rule is satisfied.
uccessive subnodes process progressively less samples but, each
ime, the search is performed over all attributes. Thus, the compu-
ational complexity is generally concentrated on the calculation of
riterion function used to find locally optimal splits. In addition,
ost-pruning [26] is usually used after induction to avoid the
verfitting to the training data, and improve the generalizing
ower of the predictive model.
3

One of the most popular representatives of top-down induced
univariate regression and model trees are CART [27] and M5 [20]
systems, respectively. The CART system minimizes the sum of
squared residuals to find locally optimal tests in the internal node.
The M5 algorithm uses a similar splitting strategy, but instead
of the mean value from the training samples, it applies a more
advanced approach in the terminal nodes. Each leaf in the M5
system contains a multiple linear model which prediction for a
particular sample is later on additionally smoothed.

Top-down DT inducers are generally fast but they can trap
in local optima and are prone to overfitting [4,19]. Thus, other
approaches, like global inducers using various metaheuristics,
have been developed to overcome these problems. Evolutionary
computation techniques are proven to be effective at escaping
local optima and are able to successfully solve a general class
of difficult optimization problems [28]. The evolutionary (global)
approach to DT induction was initially investigated in a genetic
programming (GP) [29] community. One of the first attempts was
made by Koza [30], where the author presented GP-method for
evolving LISP S-expressions corresponding to simple DTs. EA can-
didate solutions were represented by the tree structures, instead
of the fixed-sized linear chromosome representation. The idea of
evolving computer programs by GP has been further developed
over the years [31]. However, direct usage of GP to induction
of DTs is not an easy task because GP individuals are usually
generated by combining limited sets of terminal symbols and
functors, which it turns out is not enough for competitive and
robust induction. On the other hand, genetic algorithms are rather
related with linear chromosomes representation. Thus, EA-based
systems have been generally developed for global induction of
DTs, in particular for model trees [5,19].

EA-based induction of DTs is able to simultaneously search for
the tree structure, tests in internal nodes and regression models
in the leaves (for the model trees). Such a global approach can
reveal hidden patterns that are often undetectable by greedy
methods but it is, of course, much more computationally com-
plex. The dominant operation is the fitness function calculation.
Each fitness calculation requires to pass all samples in the train-
ing dataset through the tree starting from the root node to an
appropriate leaf. The value of fitness function has to be calculated
in each iteration for all modified individuals. In addition, the type
of DTs can increase the computational requirements. The number
of individuals is usually constant (in our case, dozens), while

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

t
r
p
r
t
i
t

i
a
D
D
d
c
r
p
a
f
o

2

c
i
e
s
v
m
t
u
t
a
g
c

s
e
A
g
t
p
b
t
t
t
e

Fig. 4. Schematic overview of a typical GPU (vs. CPU) architecture.

he number of iterations depends on many factors and can be
eally huge (e.g., from tens of thousands to millions) when the
roblem is ‘‘complicated’’. Popular representatives of EA-based
egression trees are TARGET [32] (evolving a CART-like regression
ree with basic genetic operators) and E-Motion [6] (globally
nducing model trees that apply a standard 1-point crossover and
wo mutation strategies — shrinking and expanding).

Currently, alternatives to the greedy top-down approaches
nclude primarily EA-based ones [4,5,33,34]. However, there are
lso solutions that use other population-based metaheuristics for
T induction, especially based on swarm intelligence (SI) [19].
ifferent from EAs, it is inspired by the collective behavior of
ecentralized, simple agents (e.g., animals as ants or bees) which
an communicate with each other. The agents follow very simple
ules but as a swarm can lead to the emergence of very com-
licated global behavior (far beyond the capability of a single
gent). So far, three SI optimization approaches have been applied
or DT induction: ant colony optimization [35], particle swarm
ptimization [36] and bat algorithms [37].

.2. GPU computing using CUDA

Modern graphics cards are equipped with a specialized pro-
essor (GPU) and high-speed (hierarchical) memory [10]. The GPU
s provided with hundreds or even thousands of simple, energy-
fficient computing units (GPU cores). Each GPU core is much
maller and slower than a CPU core, but it is especially tuned to be
ery efficient at basic mathematical operations. High bandwidth
emory, coupled with many computational units, creates GPUs

hat are ideal parallel computing devices. The GPUs often provide
nmatched price/performance and energy/performance factors
han other parallel hardware. Moreover, they enable scale-up on
single workstation. Thus, GPU accelerators are currently used in
eneral-purpose computations, e.g., in engineering and scientific
omputing [38].
The computational potential of GPUs was difficult for re-

earchers and IT staff to utilize without a dedicated development
nvironment. The introduction of NVIDIA Compute Unified Device
rchitecture (CUDA) [11] has revolutionized GPGPU. This is a pro-
ramming interface and parallel platform that exposes developers
o high-level use of GPU resources (without the need for graphics
rimitives). There are some alternatives (like OpenCL, OpenACC),
ut CUDA is the most widespread platform. In CUDA, a CPU works
ogether with a GPU (see Fig. 4). The main program is run on
he CPU that works as a coordinator. The GPU is a co-processor
hat carries out a narrower range of more specialized tasks,
.g., complex mathematical computations. Usually, a part of the
4

CPU’s tasks is delegated to the GPU to be processed by thousands
of threads in parallel, concurrently to the CPU operations.

From the CUDA programmer’s perspective [11], some parts
of a CPU code are replaced by kernels. In brief, a kernel is a
function run on the GPU. When a kernel is called, many threads
are created to perform the delegated task faster. The threads are
grouped into a grid of thread blocks. A grid is a set of blocks,
while a block is a set of concurrent threads. Threads within a
block can cooperate using synchronization barriers and shared
memory that is not accessible by the threads of other blocks.
The number of blocks in a grid and threads in a block must be
specified when calling a kernel. The GPU cores are arranged in
an array of multithreaded streaming multi-processors (SMs). Each
block of threads can be executed on one SM and cannot migrate
once assigned. All threads run the same code. The thread’s ID
allows an assigned part of the data to be processed and/or to
make control decisions.

2.3. Related work

Many computational intelligence methods have recently ap-
plied the GPGPU [39–41]. As regards evolutionary data mining,
the GPUs are especially desired to speed up the time-demanding
fitness calculations that are challenging when applied to big
data [9,42,43].

2.3.1. Parallelization in EA
Population-based algorithms are naturally prone to paral-

lelism, and the artificial evolution can be implemented in various
ways [44]. There are at least three basic parallel approaches to
EAs on CPU architectures: master–slave model, island model and
cellular one. The EAs operate on a set of independent solutions.
Thus, it is relatively easy to distribute the computational load
among multiple processors. One of the traditional decomposition
techniques is a population approach (also known as a control
approach) [44] in which individuals from the population are
evaluated parallelly on different processors. The main drawback
of this solution is a large population requirement in order to
retain good scalability. Besides, distributed-memory systems may
have problems with high inter-processor data traffic. In contrast,
shared-memory systems can suffer from an insufficient number
of available processors and memory access contention [45].

Recent research on parallelization of evolutionary data min-
ing methods has seemed to focus on GPUs as the acceleration
platform [46]. The parallel evaluation of samples (data decompo-
sition) is considered much more scalable with respect to the size
of a dataset than the population approach. It involves a gradual
distribution of the entire dataset among the local memories of
processors. However, despite the decrease of the communication
overhead, some issues with high inter-processor data traffic can
still remain, e.g., during the reduction of results [9]. Some algo-
rithms parallelized EAs with GPGPU using both decomposition
techniques [42]. Additional dimensions of parallelization were
also studied [40].

The GPGPU has also been successfully used with other strate-
gies for EAs’ parallelization. In the island model, the group of
individuals in sub-populations distributed between islands were
evolved in parallel [47]. The coarse-grained strategy was applied
in an evolutionary learning system called BioHEL [48], where
the authors proposed a two-dimensional parallelization that pro-
cesses all rules and samples in the training dataset in parallel. The
GPGPU can also be applied to the cellular algorithm which redis-
tributes individuals that can communicate only with the nearest
individuals for selection and reproduction based on the defined
neighborhood topology. In [49], the authors proposed a con-
trol approach parallelization technique, and another study [50]
tested the three-dimensional decomposition for the fine-grained
parallelization strategy.

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

2

t
b
n
d
t

f
A
a
I
p
(
b
(
t
m
w

s
i
s
t
s
w
o
w
f
t
r
o
(

a
h

h
w
a
g
f
O
w
u
d
a
t

b
a
c
d
o
t
(
m
g
c

.3.2. Parallelization of DT induction
Evolutionary induction of DTs is computationally complex and

hus time-demanding. The strong need for its parallelization has
een evident for many years [4,5,8]. However, the topic has
ot yet been explored enough. There are still open issues, like
ifferent variants of DTs, which may require dedicated algorithms
o handle big data.

In the literature, several GPU-supported DT inducers can be
ound. Some of them involve greedy (top-down) inducers [51,52].
lthough such inducers seem fast, they encounter computational
nd memory problems when large-scale data is processed [5,7].
n the CUDT system [51], classification trees were boosted by
arallelizing calculations inside each internal node. The attributes
and thresholds) in a node were checked in parallel to find the
est test finally. The induction time was reduced up to 55 times
from two to seven times compared to a multi-core implementa-
ion). The idea was later extended to search the optimal tests in
ultiple nodes in parallel [52]. However, very similar speedups
ere obtained.
Another group of the GPU-supported inducers concerns en-

emble classifiers, e.g., Random Forests [53,54] or gradient boost-
ng DTs [55,56]. The simplest approach was used in the CudaRF
ystem [53]. Each CUDA thread was responsible for building one
ree in the forest. For a large number of trees (e.g., 256), it reached
peedups of up to 30 times. An additional level of parallelism
as investigated for mining data streams [54]. The calculations
f the majority class in leaves and the splits in internal nodes
ere GPU-accelerated. The induction time was at least 300 times

aster while maintaining similar accuracy. However, these multi-
ree (‘‘black-box’’) solutions are beyond the direct interest of the
esearch presented in this paper. We focus on a fast construction
f the best single tree that can be interpreted by a data analyst
so-called ‘‘white-box’’ solutions).

As regards the evolutionary DT inducers, one of the first par-
llelizations was developed for computing clusters and used a
ybrid MPI+OpenMP approach [12]. It concerned model trees

and applied a classical master–slave paradigm with the control
approach. The individuals from the population were distributed
over the slaves that executed the most time-consuming opera-
tions (such as recalculation of the regression models in the leaves
as well as fitness evaluation and genetic operators) in parallel. The
experimental validation showed that such a hybrid solution was
able to speed up the induction up to 23 times for 64 CPU cores.

The GPU-supported global DT inducers were also studied;
owever, only classification [8] and simple regression [57] trees
ere addressed. In both cases, the experimental validation on
rtificial and real-life datasets showed that the GPU-supported al-
orithms were capable of inducing trees two orders of magnitude
aster than the original CPU version as well as multi-threaded
penMP implementation. The approach for classification trees
as also extended to multi-GPU platforms [7] as well as boosted
sing a Spark-based parallelization [58], to process really huge
atasets (even up to billions of samples). Although the Spark-
ccelerated induction was easy to scale up, it was slower than
he GPU-supported solutions.

This paper addresses the model trees whose complex tree-
ased representation with univariate tests in the internal nodes
nd multiple linear regression models in the leaves stand a new
hallenge. Their global induction needs a more elaborate and
edicated parallel approach, like a multiphase parallel model
r even all-GPU parallel one [59]. In the case of classification
rees, two algorithm phases directly related to fitness calculations
dataset samples redistribution and error calculations) are the
ost time-consuming operations. Thus, it was enough to dele-
ate them onto the GPU to obtain a satisfactory speedup. In the

ase of model trees, a straightforward parallelization of the most

5

time-consuming operation (calculations of regression models in
modified leaves) seems to be not enough to obtain a satisfactory
fast solution. There is a need to delegate all dataset-related oper-
ations into the GPU, even if their time execution is insignificant
on the CPU, leaving fast EA-related tasks (e.g., drawing variants of
genetic operators and nodes to be modified) and control decisions
for the CPU.

3. Global Model Tree system - GMT

In this paper, we decided to use the Global Model Tree system
(GMT) [5] to deploy the proposed solution. The GMT is a part
of the Global Decision Tree framework that enables evolutionary
induction of different DTs using various hardware (e.g., computer
clusters [12,58], GPUs [8,9]) and different engines (e.g., CUDA [8],
MPI+OpenMP [12], Spark [58]). The GMT system follows a typical
EA framework [60] with an unstructured, fixed-size population
and a generational selection.

3.1. Representation

The GMT system allows evolving regression trees with various
representations of internal (based on the test type: univariate,
oblique, mixed) and terminal (regression, model) nodes [14].
Individuals in the population are not specially encoded and are
processed in their actual form (like in GP). The reason for this
is that DTs are quite complex structures in which the number
of nodes, the tests in internal node and the regression models
in the leaves are not known in advance for a given dataset. This
is why the direct tree-like representation may be more suitable,
especially if the entire tree is searched in one EA run. Such a rep-
resentation may suggest that we face a GP algorithm; however,
the solution can be rather broadly classified into EAs.

We focus on univariate model trees [13], so every test in the
internal node is based on a single attribute; however, our study
can be easily applied to other representations. Each leaf of the
tree contains a multiple linear model that is constructed using
the standard regression technique for the samples associated
with the node. A dependent (target) attribute y is explained
by the linear combination of multiple independent attributes
x1, x2, . . . , xq:

y = c0 + c1x1 + c2x2 + · · · + cqxq, (1)

where q is the number of independent attributes and c0..q are
fixed coefficients that minimize the sum of the squared residuals
of the model. If all ci (0 < i ≤ q) are equal to 0, then the leaf
becomes a regression node with a constant target value equal to
c0.

3.2. Initialization and selection

In general, an initial population should be randomly generated
in order to ensure sufficient diversity and cover the whole range
of possible solutions [61]. Due to the large search space, the use
of greedy heuristics in the initialization phase is often considered
as a way of reducing the computation time. The disadvantage of
this strategy is that EA can trap in the local optima. To maintain a
balance between exploration and exploitation, initial individuals
in GMT are created by using a simple top-down manner with
randomly selected sub-samples of the original training data.

Tests are created according to the dipolar strategy [13]. A
dipole is a pair of samples used to find the effective test (returning
two different outcomes). At first, a sample that will constitute
the dipole is randomly selected from a set of samples located
in the considered node. The remaining samples are sorted in

decreasing order according to the differences in target attribute

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

e
v
t
f
d
o

3

a
a
i
G
r
o
t
c
i
s
s
m
n
t
n
e
c
I
r
e
e

(

w
s
n
e
(
k
m
n
t

4

c
c
r

Fig. 5. Different variants of the crossover operator: 1 - exchange subtrees, 2 -
exchange tests, 3 - exchange branches.

values in relation to the selected sample. The second sample
that constitutes the dipole should be far enough to the first one.
To find it, we used a mechanism similar to the ranking linear
selection [60]. Finally, the test that splits the dipole is constructed
on a randomly selected attribute, and the threshold is set in the
midpoint between the pair that forms the dipole.

The linear ranking selection [60] is also applied as the proper
volutionary selection. Additionally, in each iteration, one indi-
idual with the highest fitness in the current population is copied
o the next one (elitist strategy). The evolution ends when the
itness of the best individual in the population does not improve
uring the fixed number of generations, or the maximum number
f generations is reached.

.3. Genetic operators

Genetic operators are the main forces that control evolution-
ry search and provide, at the same time, a necessary diversity
nd novelty. Application of the operators can modify the tests
n internal nodes, tree structure and models in the leaves. The
MT system applies two specialized genetic meta-operators cor-
esponding to the classical mutation and crossover. For both
perators, GMT provides several variants [5] that influence the
ree structure and the splitting tests in the internal nodes. The
rossover operator attempts to combine elements of two existing
ndividuals in order to create new solutions (offspring) that share
ome characteristics of their ‘‘parents’’. Each crossover starts by
electing the positions (nodes) in two affected individuals. In the
ost straightforward variant, the subtrees starting in the selected
odes are exchanged (swapped) (see Fig. 5), which corresponds to
he classical crossover from genetic programming [30]. When the
on-terminal nodes are chosen and the number of outcomes is
qual, tests or branches associated with randomly chosen nodes
an also be exchanged. An asymmetric crossover is also possible.
t duplicates a subtree with a lower prediction error and uses it to
eplace a subtree with a higher prediction error. Such an operator
liminates weak nodes and promotes ones with a small value of
rror.
The mutation of an individual starts with selecting a node type

equal probability of selecting a leaf or an internal node). Next,
6

the ranked list of nodes of the selected type is created [62], and
a mechanism analogous to the ranking linear selection [60] is
applied to decide which node will be affected. Depending on the
type of node, the ranking takes into account: (i) location (level)
of the internal node in the tree — it is evident that modification
of the test in the root node affects the entire tree and has a large
impact, whereas the mutation of an internal node in the lower
parts of the tree has only a local impact; and (ii) prediction error
of the node (applied to both internal nodes and leaves). This way,
internal nodes in the lower parts of the tree and/or those with
higher error rates are more likely to be mutated.

The GMT framework offers several specialized variants of
crossover and mutations. Here, we include a brief listing of
these variations; however, for in-depth description, application
and probability of use of each of the variants, please refer to
works [13,14]:

• new test - reinitializes a test in the internal node using the
dipolar strategy (another attribute can be used);

• shift threshold - shifts the splitting threshold of the test on
the same attribute;

• change model - changes linear regression models in the
leaves (add, remove, or change attributes);

• prune - changes an internal node into a leaf (acts like a
standard pruning procedure) with a new multivariate linear
regression model;

• expand - transforms a leaf into an internal node with a
randomly chosen test (allows expansion of the tree and
searches for more specific regions).

3.4. Fitness function

The fitness function, which drives the evolutionary search,
should reflect the goal of the algorithm. In many data mining
tasks, one tries to find the best predictor, but simultaneously,
the simplicity of such a predictor is often desired. It is well-
known that a predictor that works perfectly on the training data
is usually much worse when tested on unseen data due to the
overfitting problem [63]. Therefore, a multi-objective optimiza-
tion is required to minimize the prediction error and the tree
complexity at the same time. In the case of model trees, the
predictor complexity must include not only the number of nodes
but also the size of the linear models in the leaves.

The GMT system [5] provides various multi-objective opti-
mization strategies, including weight formula, lexicographic anal-
ysis and Pareto-dominance [64]. As, in this paper, univariate
model trees are considered, the simple weighted form of the
fitness function, which is maximized, can be used:

Fitness(T) = [1 −
1

(1 + SSe(T)/n)
] + α·k(T), (2)

here SSe(T) represents the tree error calculated as the sum of
quared residuals of the tree T estimated on the learning dataset,
stands for the number of samples, α is a user-defined param-
ter that reflects the relative importance of the complexity term
default value is 0.001) and k(T) is the tree complexity. The term
(T) can also be viewed as a penalty for over-parametrization. For
odel trees, it is equal to the sum of both: the number of internal
odes and the number of attributes in the linear models over all
he leaves.

. CUDA-accelerated GMT - cuGMT

The general idea of the GPU-supported solution (called
uGMT) is illustrated in Fig. 6. The evolutionary induction is
ontrolled by a CPU, while the most time-consuming and dataset-
elated operations (samples’ redistribution, models construction,

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

f
T
p
b
t
t
t

t
a
n
c
o
p
t
a
n
t
s

a
F
i
a
i
S
d
i

4

t
t
G
t
c
a

s
r
f
s
s
r

Fig. 6. General idea of the GPU-accelerated evolutionary induction.

itness calculation and dipoles searching) are delegated to a GPU.
he initialization and selection steps remain unchanged com-
ared to the original GMT system. These steps are not parallelized
ecause they take an insignificant part of the overall time (less
han 1% of the total execution time of the algorithm). Moreover,
he initial population is created only once on small fractions of
he dataset.

Concerning genetic operators, basic activities are run sequen-
ially on the CPU, e.g., changes in the tree structure. However,
fter successful application of crossover or mutation, there is a
eed to evaluate the individuals, and then the GPU is called to
alculate the fitness. This part of the algorithm is time-consuming
peration since all samples in the training dataset need to be
assed (redistributed) through to the tree, starting from the root
o the appropriate leaves. The model construction itself could
lso be time-demanding, especially for large datasets. Then, large
umbers of samples can be located in some leaves. As all samples
hat fall into a leaf are used to find the regression model, large
ize matrix operations may be required.
The construction of the cuGMT system ensures that the par-

llelization does not affect the behavior of the original EA (see
ig. 6). The evolutionary induction flow is driven by the CPU
n a sequential manner, while the time-demanding parts of the
lgorithm are isolated and delegated to the GPU. The follow-
ng sections describe the GPU parallelization in greater detail.
uccessively, decomposition strategy, six GPU-supported proce-
ures (see also Listing 2 in Appendix A) as well as memory and
mplementation aspects are, among others, shown.

.1. GPU-based parallelization overview

Before the evolutionary loop, the whole dataset is sent from
he CPU side to the GPU side (see Fig. 7). This CPU–GPU data
ransfer is performed only once, and the data is kept on the
PU side till the evolutionary induction stops. On the GPU side,
he dataset is saved in the global memory that has the biggest
apacity among GPU’s memories. This way, all GPU threads have
ccess to the data.
In the evolutionary loop, each time the genetic operator is

uccessfully applied, the GPU is asked to help the CPU, e.g., to
ebuild models, calculate fitness or search dipoles (see Fig. 7). At
irst, the modified individual is sent to the GPU. Then, six GPU-
upported procedures are called in sequence: redistribute,
eparate, reorganize, calc_models, estimate_errors and

eduction. First, they are responsible for the redistribution of

7

Fig. 7. Flow chart of the CPU–GPU communication, memory allocation and
kernels’ execution.

samples among the tree leaves. Then, models in the affected
leaves are built (or rebuilt). When the models are updated, the
GPU estimates a prediction error to find a fitness value. These
GPU-supported procedures also search candidate samples for the
dipoles from which they are finally constituted. In the end, the
obtained tree errors as well as dipoles are sent back to the CPU
that uses them to update the affected individual.

4.2. Decomposition technique

In all six GPU-supported procedures, calculations are spread
over GPU cores. We use the data decomposition strategy illus-
trated in Fig. 8. In this strategy, each GPU thread does similar
jobs but operates on different dataset chunks. We decided to
concentrate only on distributing the dataset, as it is a power-
ful and commonly used strategy for deriving concurrency when
operating on large data [8,45].

The dataset is decomposed at two levels (see Fig. 8). At first,
the whole dataset is spread into smaller parts that are processed
by different GPU blocks. Next, in each block, the assigned samples
are spread further over the GPU threads.

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

f
A

t
a
l

p
(

4

p
p
p

t
r
F

t
p
I
c
w
l
s

k
s
s
C
b
t
c

4

b
d
a
t
I
s
n

c
t

Fig. 8. Dataset decomposition strategy. The dataset is spread into smaller parts,
irst between different GPU blocks and then further between the threads.
djacent threads inside blocks process/access neighboring data.

Fig. 9. redistribute procedure — all the dataset samples are passed through
he tree starting from the root node to leaves. This way, each sample is
ssociated with an appropriate leaf, e.g., 1st sample (S1) is associated with 2nd
eaf (L2). The dataset samples are processed in parallel by GPU threads using
the decomposition strategy from Fig. 8.

4.3. Six GPU-supported procedures

4.3.1. redistribute procedure
The redistribute procedure is a GPU kernel responsible for

samples’ redistribution. It searches an appropriate leaf for each
training sample (see Fig. 9 and Listing 2). To this aim, all samples
are propagated through the tree, starting from the root node
and moving towards the leaves. The results are stored in two
tables. The first table is used to save the identifiers of the samples
(samples’ IDs), while the second one stores the identifiers of the
corresponding leaves (leaves’ IDs).

Both tables are allocated in the GPU global memory, thus they
are accessible for all threads. There is no need to synchronize
threads as they work independently on different parts of the
dataset. In the next algorithm steps, the tables are first sorted
by the separate procedure and then used by the reorganize
rocedure to prepare data for finding multiple linear regression
MLR) models.

.3.2. separate procedure
The role of this procedure is carrying out so-called

re-reorganization. It operates on two auxiliary tables (with sam-
les’ and leaves’ IDs) created by the redistribute kernel. It
repares these tables for the reorganize procedure that uses
8

Fig. 10. separate procedure — separating the key–value pairs into contiguous
buckets (key — the leaf’s ID, value — the sample’s ID). Tables with the leaves’
and samples’ IDs are initially created by the redistribute kernel.

Fig. 11. reorganize — reorder of the dataset samples by the leaf ID using
wo auxiliary tables from the separate procedure. The dataset samples are
eordered in parallel by GPU threads using the decomposition strategy from
ig. 8.

hem to reorder dataset samples. As illustrated in Fig. 10, the
rocedure separates the IDs of the samples by the corresponding
Ds of the leaves. In other words, it splits the key–value pairs into
ontiguous buckets. The key is a leaf ID, the value is a sample ID,
hile the number of the buckets equals the number of the tree

eaves. Each bucket contains IDs of the samples that fall into the
ame leaf.
In cuGMT, the separate procedure is solved by sorting the

ey–value pairs. We apply the radix sort algorithm that is con-
idered one of the fastest on-GPU sorting algorithms [65,66]. The
tate-of-the-art GPU-based radix sort implementation from the
UB library [67] is used. The CUB library provides a collection of
asic primitives (sort, scan, reduction, . . .) at three levels: device,
hread block and warp. In our case, a device-wide sort primitive
ub::DeviceRadixSort::SortPairs is taken.

.3.3. reorganize procedure
This GPU kernel prepares data (in the form of matrices) for

uilding MLR models directly. The kernel reorders (splits) the
ataset samples by the leaf ID (see Fig. 11 and Listing 2). To this
im, it uses two auxiliary tables (with samples’ and leaves’ IDs)
hat have already been reorganized by the separate procedure.
n addition, a table of the same size as the dataset is used to
tore the reordered samples temporarily. The original dataset is
ot modified.
All auxiliary tables, as well as the original dataset, are allo-

ated in the GPU global memory. Thus, they are accessible for all
hreads. Different threads operate on different parts of the dataset

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

I
d
b
(

R

p
c
C
i
f

4

G
l
b
v
t

l
f
t
s
s
s
t
n
a
b
e
t
a
o
m
b
t

Fig. 12. calc_models procedure — building models in the leaves. In each
affected leaf, a MLR model is constructed using the QR factorization and GPU
linear algebra libraries (cuBLAS, cuSOLVER).

(following the proposed decomposition strategy). Thanks to these
three auxiliary tables, threads know in advance how to reorder
dataset samples without disturbing each other. Thus, all threads
(both inside and outside blocks) reorder samples concurrently
without any synchronization.

Finally, the dataset is divided into multiple matrices, one for
each leaf (see Fig. 11). In addition, the samples (the values of the
samples’ attributes) within each matrix are transposed compared
to the original dataset. This transposition is done at the same time
when the reorganization takes place (during copying the samples
from the original dataset to the auxiliary table in appropriate
order). The original dataset remains unchanged till the end of the
evolution. The created matrices (one for each leaf) are then used
in the next GPU-supported procedure to build MLR models.

4.3.4. calc_models procedure
This procedure is directly responsible for models construction.

t aims to build MLR models in all affected leaves (leaves that are
irectly modified or lie below a modified node). Each model is
uilt using only the samples associated with the considered leaf
see Fig. 12) in accordance with Eq. (1).

To determine q unknown coefficients C = [c0, c1, . . . , cq]T
in Eq. (1), multiple linear equations need to be solved. They
can be collected into a single matrix equation: Y = XC, where
X is a matrix with dataset attribute values (assuming that the
first column is 1) and Y provides the dataset target values. For
each leaf, X and Y are prepared by the previous GPU-supported
procedure (reorganize kernel). The equation cannot be directly
solved. The QR factorization [68,69] is applied to put it into a
tractable form. In brief, the matrix X is decomposed into two
matrices Q and R (X = QR) (see Fig. 12), where Q is orthonormal
and R is upper triangular. Then, both sides of the matrix equation
are multiplied by QT and we get QTY = QTQRC. The left side
simplifies and we end up with QTY = RC that is tractable since
is upper triangular.
In cuGMT, two GPU-accelerated linear algebra libraries are ap-

lied to implement the QR factorization and finally find the MLR
oefficients: cuBLAS1 and cuSOLVER.2 For each modified leaf, the
PU calls the following functions (see Listing 2). For the QR factor-
zation, the function cusolverDnQgegrf() is used. The modi-
ied left-hand side QTY is computed with cusolverDnSormqr().

1 NVIDIA cuBLAS, https://docs.nvidia.com/cuda/cublas/.
2 NVIDIA cuSOLVER, https://docs.nvidia.com/cuda/cusolver/.
 t

9

Fig. 13. estimate_errors and reduction - computing errors in all nodes of
the tree to find the fitness value finally. In estimate_errors kernel, the same
individual (tree) is processed in parallel by successive blocks (of threads). Each
block is responsible for a different part of the dataset and stores partial sums
of errors in separated memory space (‘‘copy’’ of the individual). The reduction
kernel merges the partials results from different blocks and propagates errors
and dipole samples from the leaves towards the tree root.

Finally, the function cublasStrsm() backsolves the equation
QTY = RC providing the MLR coefficients.

.3.5. estimate_errors and reduction procedures
The estimate_errors and reduction procedures are the

PU kernels. Their role is the error (and finally fitness) calcu-
ation. They use the assignment of samples to leaves (provided
y redistribute kernel) as well as the MLR models (pro-
ided by the calc_models procedure). Thus, there is no need
o propagate the dataset samples through the tree again.

The estimate_errors kernel computes errors in all tree
eaves (see Fig. 13 and Listing 2). In each leaf, the squared dif-
erences between the predictions of the processed samples and
he leaf prediction are found and added. The dataset samples are
pread over GPU threads. Thus, different threads compute the
quared errors for various samples. In each leaf, the sum of the
quared errors is stored. Since more than one thread may attempt
o add its temporary result in a single leaf, synchronization is
eeded. As regards threads inside blocks, the CUDA atomic oper-
tion atomicAdd is applied [11]. Concerning threads in different
locks, there is no native way to synchronize them. Thus, for
ach GPU block, a separated space in shared memory is created
o collect the results for the evaluated individual (it is visible by
ll threads within the block). It can be seen as separated copies
f the individual are created but only the place for the results is
ultiplied but not the DT structure itself. Threads from different
locks store results in their own space in memory. This way, all
hreads can process the dataset in parallel.

The reduction kernel gathers and merges information about
he sum of squared errors from partial results allocated in each

https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cusolver/

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

G
L
e
f

4

G
G
t
B
d
i
a
f

o
S

2

PU block (reduction with the addition operator) (see Fig. 13 and
isting 2). This operation provides the overall sum of squared
rrors in all leaves. Finally, the computed sums are propagated
rom the leaves towards the root node.

.4. Memory and implementation aspects

In order to suit the computation and memory model of
PGPU [11], the representation of individuals is different on the
PU side than on the CPU one. Before an individual is transferred
o the GPU, its flat representation is created [8] (see Listing 1).
ased on its references (pointers) CPU representation, a one-
imensional array is built. At the beginning of the array, the root
nformation is stored, following its descendants and so on. The
rray index of the left child of the ith node equals (2∗ i+1), while
or the right child, it is (2 ∗ i + 2). The globally induced DTs are
usually not large; thus, the time of transformation and transfer
should be relatively short or even negligible for big datasets.

Another important issue of GPU-parallelized applications is
memory access pattern as it can drastically impact computational
efficiency [9,70]. In our case, the most frequently used data is the
information about the nodes of DTs (attributes and thresholds) as
well as the training dataset that is also the most massive data. The
dataset samples as well as trees are stored in one-dimensional
arrays. Generally, there are two major data layouts for arrays of
items: Structure-of-Arrays (SoA) and Array-of-Structures (AoS).
The other more sophisticated layouts are hybrid formats [71]. In
SoA, multi-value data (e.g., values of subsequent attributes of the
dataset) are stored in separated arrays and the arrays are grouped
in a structure. In AoS, they are grouped first in a structure (e.g., a
structure of sample attributes) and an array of such structures is
used. Although for both layouts the same data is represented, they
imply completely different memory access patterns. We decided
to apply the SoA layout for individuals and the dataset samples.
The SoA layout is usually preferred from the GPU perspective
because one thread may copy data to cache for other threads pro-
viding a coalesced memory transaction [70,71]. In recent works
on classification trees [5,7], such memory organization provided
the best acceleration.

The training dataset is kept during the whole evolution on
the GPU side. It is only transferred to the GPU once before the
evolution starts. Thus, the time of sending is negligible even if
the dataset is large. We decided not to store the arrangements
of samples in each tree node but only in the leaves, in contrast
to the sequential version. It helps to save memory space as well
as reduce memory transactions at the cost of more arithmetic
operations. However, some variants of the mutation operator
require a randomly chosen dipole. In order to select the dipole in
a node, the information about which samples fall below that node
is necessary. As the propagation of the samples is performed on
the GPU side, the CPU does not have access to such information.
To minimize the GPU–CPU transfer, the assignment of leaves
(IDs) to samples (IDs) is not sent to the CPU. Instead, the GPU
provides the CPU with the dipole (two samples) for each tree
node. These two samples are found by the estimate_errors
and reduction kernels.

In the estimate_errors kernel, one of the samples (that
reached this leaf) is randomly selected in each tree leaf. The
same operation is done independently in each block. When the
results from different blocks are merged (reduction kernel),
two samples are selected from the available set of samples in each
leaf according to the differences in the dependent attribute value.
Two samples with the biggest (possible) difference are chosen.
In the end, the selected samples are propagated to the tree root
to provide samples for dipoles also for internal tree nodes. The
dipole from the randomly chosen child is copied to the parent
node.
10
Table 1
Characteristics of the real-life and artificial datasets: name, number of samples,
number of attributes.
Dataset No. samples No. attributes

Pol 15000 48
Elevators 16599 18
Cal housing 20640 8
House 16H 22784 16
House 8L 22784 8
2dplanes 40768 10
Fried 40768 10
Mv 40768 7
Layout 66615 31
Colorhistogram 68040 31
Colormoments 68040 8
Cooctexture 68040 15
Elnino 178080 9
Year 515345 90
Suzy’ 5000000 17

Armchair10K 10000 2
Armchair50K 50000 2
Armchair100K 100000 2 (4, 6, 8, 10)
Armchair500K 500000 2
Armchair1M 1000000 2 (4, 6, 8, 10)
Armchair5M 5000000 2
Armchair10M 10000000 2

The global memory of the GPU has the largest capacity but,
at the same time, the highest latency access among its memo-
ries. Thus, in the kernels, data stored in the global memory and
frequently used (e.g., tree nodes, sample attributes) is explicitly
copied to local kernel variables. At the end of the kernel, the data
is transferred back into the global memory containers, if needed.
This way, each thread tries to accumulate temporary values into
registers (fast on-chip memory but of small capacity).

5. Experimental setup

5.1. Datasets details

Experimental validation has been performed on both real-life
and artificial datasets. The details of each one are presented in
Table 1. We have chosen the thirteen biggest datasets (half) that
were used to verify the prediction performance of GMT [13]. They
are provided by Louis Torgo [72] and the UCI Machine Learning
Repository [73].

In addition, two large datasets from the UCI repository are
included: Year and Suzy. The Year dataset concerns the prediction
f the release year of a song based on 90 audio attributes. The
uzy originally concerns classification. However, due to the lack of
publicly available larger regression datasets, it was slightly trans-
formed and applied. The original class was eliminated and the last
attribute was predicted. The only purpose of this operation was to
investigate the speedup of the algorithm and not the prediction
performance. The modified dataset is called Suzy’.

Concerning the artificial datasets, the problem called Arm-
chair [13] was analyzed. In Fig. 14 (top), the problem is visualized
in 3D, and an example of the model tree generated by GMT
is shown. This dataset seems to be relatively easy; however,
many traditional approaches (top-down without look-ahead) fail
to find the optimal first test. As a result, the obtained trees are
overgrown. The GMT induces a model tree built of five models in
leaves (see Fig. 14, bottom) and the estimated prediction error
measured by root mean square error (RMSE) is less than 0.1.
Whereas, two popular greedy inducers, M5 [20] and WEKA REP-
Tree [74], generate the trees with 18 and 87 models with RMSE =

.33 and RMSE = 1.48, correspondingly.
The use of the synthetic problem allowed us to scale datasets

freely. We investigated a various number of training samples,

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

e

f
d
h
A
f

5

T
a
a
i
r
w
T
o
1
o
a
(
m

p

Table 2
General specification (processing and memory resources as well as computing capability) of four NVIDIA GPU cards/accelerators used
in the experiments.
NVIDIA Engine Memory Computing

GPU No. CUDA cores Clock rate [MHz] Size [GB] Bandwidth [GB/s] capability

GeForce GTX 780 2304 863 3 288.4 3.5
GeForce GTX Titan X 3072 1000 12 336.5 5.2
Tesla P100 3584 1328 12 549.0 6.0
GeForce RTX 2080 Ti 8704 1350 11 616.0 7.5
u
p
p

T
t
r
m
a
o
r
o

o
s
(
d
t
e
T
a
e
P
d
s
a
m

o
s
e
H
c
s
w
0
t
l
c
l

Fig. 14. Visualization of the Armchair dataset (top) and the corresponding
xample of a model tree generated by GMT (bottom).

rom 10 thousand to 10 million. We also studied the influence of
ataset dimension (number of attributes). The original datasets
ave two attributes. Into two chosen variants (Armchair100K and
rmchair1M), randomly generated (noisy) attributes from uni-
orm distribution were added, successively 2, 4, 6, and 8.

.2. Hardware and software details

In the experiments, we tested four different NVIDIA GPU cards.
heir basic specification is displayed in Table 2. The used GPUs
re a mixture of current and previous generations of NVIDIA
rchitectures. The first GPU card was launched in 2013 but it
s still quite powerful. It is based on Kepler architecture and is
ecognized as one of the slowest aging cards. The Titan X card
as launched in 2015 and is based on Maxwell architecture.
esla P100 is the professional-level GPU accelerator. It is based
n Pascal architecture and currently costs about $5000 (at least
0 times more than the first GPU card). The last GPU card is
ne of the newest NVIDIA products that is based on Turing
rchitecture. It delivers 13.45 TFLOPS of peak single-precision
FP32) performance (theoretical performance), about 1.5 times
ore than Tesla P100.
The host machine that performed the time performance com-

arison between CPU and GPU-accelerated algorithms was a
 w

11
server with 2× Intel Xeon E5-2620 v4 (20 MB Cache, 2.10 GHz,
8 physical cores) and 256 GB RAM. It was running the 64-bit
Ubuntu Linux 16.04.6 LTS operating system. The algorithm was
implemented in C++, while the GPU-supported parts were in
NVIDIA CUDA-C and compiled by nvcc CUDA version
10.0.130 [75]. In addition, three CUDA libraries were employed:
cuBLAS, cuSOLVER and CUB version 1.8.0 [67]. Single-precision
arithmetic was applied. The sequential and CPU-parallelized
(OpenMP) versions [15] were compiled by gcc version 5.4.0.

5.3. Parameters details and measurement methodology

In all experiments, a default set of parameters previously
applied to the sequential version of GMT was used [5,13]. The
main parameters were as follows: population size = 64 individ-
als; crossover probability = 20% assigned to the tree; mutation
robability = 80% assigned to the tree; elitism rate = 1 individual
er generation and the number of iterations = 10000.
Each configuration (dataset and CPU/GPU) was run 10 times.

he average value of run-time measurements was presented. For
he biggest datasets and CPU-based computing, the number of
uns was decreased to five runs and/or the total time was esti-
ated based on fewer iterations than declared (what is marked
long with the results). As a speedup [45], we measured the ratio
f the time necessary to solve a problem sequentially to the time
equired by its parallel version. In our case, it was the OpenMP
r GPU-supported parallelization.
The main aim of this paper is to assess the time performance

f the GPU-accelerated inducer — cuGMT. Thus, the exact re-
ults for the prediction error are not included. In previous works
e.g., [5,13]), GMT was thoroughly validated concerning the pre-
iction error, tree size and model size in the leaves. It was shown
hat GMT outperforms popular, greedy, single-tree counterparts,
.g., M5 [20] (state-of-the-art model tree inducer) and Weka REP-
ree [10]. However, the greedy inducers were substantially faster,
nd this is why the boosting of the evolutionary approach is so
xpected. As regards the more complex solutions, like Gaussian
rocess Regression or ensembles of trees (Boosting, Bagging, Ran-
om Model Trees, and Additive Groves) [76], statistical analysis
howed that there was no strong winner [13]. However, GMT
ppeared to be the most stable solution and gave much easier
odels to interpret.
Two fitness functions were used. The first choice was the

ne based on Bayesian information criterion (BIC) [77] as it was
hown that it works well as a multi-objective optimization strat-
gy in the induction of regression [32] and model trees [13].
owever, it turned out that such a fitness function tends to
hoose trees that are too complex (too large) when the data
ize grows (from ≈ 1 million samples). Thus, for such datasets,
e decided to apply a simple weighted formula (2) with α =

.001 where the number of samples does not directly influence
he complexity penalty. This formula was thoroughly verified in
arge-scale data mining concerning the evolutionary induction of
lassification trees [7,8]. For small and medium-size datasets, we
eft the BIC-based formula to be coherent with the protocol that

as applied to validate the sequential GMT version [5,13].

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

H
k
d
a
d

T
p
c

6

6

T
O
I
i
i
G
∼

w
u

n
e
t
d
H
t
e
m
o
(
a
R
p

Table 3
Execution time (in seconds) of the GPU-accelerated, OpenMP-accelerated [12] and sequential versions of GMT [13], using real-life datasets. For the fastest GPU and
the sequential version, the time is also rounded in minutes/hours/days and presented in brackets.
Dataset RTX 2080 Ti Tesla P100 Titan X GTX 780 OpenMP Sequential

Pol 1 226 (20.5 min) 1 933 2 557 3 652 4124 9259 (2.5 h)
Elevators 511 (8.5 min) 825 894 1 133 5992 33268 (9 h)
Cal housing 431 (7 min) 728 789 895 4350 18861 (5 h)
House 16H 624 (10.5 min) 936 957 1 181 9188 21831 (6 h)
House 8L 465 (8 min) 801 850 1 092 3048 8374 (2.5 h)
2dplanes 662 (11 min) 961 982 1 194 27100 74969 (21 h)
Fried 548 (9 min) 883 912 1 138 9812 23300 (6.5 h)
Mv 872 (14.5 min) 1 119 1 679 2 338 6657 21442 (6 h)
Layout 1 180 (19.5 min) 1 563 1 858 2 550 77985 328404 (91 h)
Colorhistogram 2 138 (35.5 min) 4 537 4 851 7 085 27073 94755 (26 h)
Colormoments 741 (12 min) 975 1 036 1 205 17527 62891 (17.5 h)
Cooctexture 1 183 (20 min) 1 648 1 918 2 617 45381 153494 (43 h)
Elnino 1 696 (28 min) 4 166 4 295 6 980 19475 66216 (18.5 h)
Year 4 257 (71 min) 9 111 9 222 12 288 427744 1758964a (20 days)
Suzy’ 149 565 (42 h) 188 730 194 985 283 357 14650219a 61791636a (2 years)

aNote: Execution time estimated based on 1000 first iterations.
C
v
o
a
t
o
t
m
i

Concerning the CUDA kernel execution, the number of thread
blocks and threads per block was set at 256 × 256 by default.
owever, the default configuration was modified in order to
eep the workload of each thread when small and medium-size
atasets were processed. We decided to provide between four
nd eight samples for each thread. Thus, for the following real-life
atasets (see Table 1), the settings were changed to:

– 64 × 32 for 1st–5th datasets;
– 128 × 64 for 6th–8th;
– 128 × 128 for 9th–12th;
– 256 × 128 for 13th one.

he Archmair10K, Archmair50K and Archmair100K datasets were
rocessed using 64 × 32, 128 × 64 and 128 × 128 configurations,
orrespondingly.

. Results and discussion

.1. Real-life datasets

Table 3 presents the results for all tested real-life datasets.
he mean execution times of cuGMT (using four different GPUs),
penMP-accelerated, and (sequential) GMT versions are shown.
n all cases, the GPU-accelerated solution is able to speed up the
nduction. For the smallest dataset (Pol), the scale of the time
mprovement (a few times) is the least remarkable. The strongest
PU (RTX 2080 Ti) reduces the induction time from ∼2.5 h to
20.5 min (7.5×). For datasets with more training samples, the

time of evolutionary induction increases. Hopefully, the acceler-
ation provided by cuGMT also grows, allowing an inducer to be
generated in minutes instead of hours. For example, in the case
of 2dplanes2, the time is reduced from ∼21 h to ∼11 min (113×),
hile for Layout it is reduced from ∼91 h to ∼19.5 min (278×),
sing RTX 2080 Ti GPU.
For the biggest datasets, the acceleration is the most promi-

ent (about 410× in both cases). A similar speedup may be
xplained by a similar dataset memory requirement. Although
he Suzy’ dataset has about 5× more samples than the Year
ataset, the former has about 5× fewer attributes then the latter.
owever, the number of samples (5 million) notably influences
he induction time. Concerning the Suzy’ dataset, the sequential
volutionary induction took so long that its time had to be esti-
ated based on fewer iterations. We verified the execution times
f the GPU-supported induction for an even larger dataset: Higgs
11 million samples, 28 features) that was transformed similarly
s Suzy dataset. The time of induction was about six days using
TX 2080 Ti GPU. Due to very long computation times, it was not
rocessed using the sequential version of the algorithm.
12
Fig. 15. The run-time breakdown of the GPU-accelerated algorithm using
RTX 2080 Ti GPU for chosen real-life datasets. The average time (as a percentage
of total run-time) of the most relevant parts is shown, both communication
between CPU–GPU/GPU–CPU and GPU/CPU computations are included.

The differences in acceleration between datasets can be in-
vestigated with the run-time breakdown presented in Fig. 15.
It shows the mean time (in percentage) spent on executing the
most relevant parts of the algorithm (e.g., CPU calculations, data
transfer between CPU–GPU/GPU–CPU, GPU kernels) for six cho-
sen datasets using RTX 2080 Ti. We clearly see that, for all
datasets, the time spent by the CPU on calculations is very short in
comparison with the total run-time (from 0.04% for Year to 1% for
ooctexture). Another observation is that the datasets can be di-
ided into two groups. For the first one (from the left, Pol and Col-
rmoments), the data flattening (conversion to one-dimensional
rray representation on the CPU) and reduction (GPU) operations
ake considerably more time then for other datasets. The time
f these two operations strongly depends on the size of model
rees (number of nodes + sizes of models in leaves) which are
uch bigger than for other datasets [13]. Another important issue

s the necessity of threads synchronization when merging up

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

t
M
t
t
i

t
m
t
t
C

t
(
(

o
t
m
t
a

c
d
a
i
2

a
b
o
c

G
d
e
p
w
t
t
c
a
e
w
(
h

C
b
t
g
t
p
(
M
t
s
a
F
p
h

5
i
t
l

a
s
w
c
i
i
a
d
a

f
o
a
G
t
t
i
t
t
t
p
g

k
i
g
i
p
t
G
n
i
p
f
o
s
f
t
f

s
h
e
t
c

s
s
t
a

he results, which can also diminish the parallelization potential.
oreover, the size of the GPU’s shared memory is usually limited

o 48 kB per SM [75]. Thus, for larger trees, the algorithm uses
he default global memory space during the reduction. All these
ssues may explain the observed separation.

The data flattening operation is an overhead (excess compu-
ation time for parallelization purposes). For Pol dataset, it takes
ore than 10% of the total execution time. Moreover, as it is

he smallest dataset, the time of CPU–GPU/GPU–CPU memory
ransfers (communication overhead) is relevant (8% vs. 0.5% for
ooctexture or 0.1% for Year). These two overheads affect the time

performance and are probably the reasons why the induction
time is decreased only a few times in this case. When comparing
the Pol and Colorhistogram datasets, we see that the growth in
he number of samples reduces the overhead about two times
in relation to other algorithm parts), providing a higher speedup
44×).

The second group consists of four datasets on the right side
f Fig. 15 (Colormoments, Cooctexture, Layout and Year). The flat-
ening time is almost unnoticeable for all of them, and the com-
unication overhead contribution decreases when the number of

raining samples and attributes grows. Colormoments, Cooctexture,
nd Layout datasets have roughly the same number of samples

but a different number of attributes: 8, 15 and 30, correspond-
ingly. Each time that the number of attributes grows, the time
needed to build models (calc_models procedure) increases in
omparison to other algorithm parts. As it is the most time-
emanding procedure that is parallelized, the obtained speedup
lso increases. For example, using RTX 2080 Ti, the induction time
s reduced about 85× (Colormoments), 130× (Cooctexture), and
78× (Layout).
Considering each tested GPU separately, Table 3 shows that

ll of them are able to speed up the induction of model trees. The
est results are obtained by RTX 2080 Ti GPU, as it is the strongest
ne. In three cases (Colorhistogram, Elnino, Year), the RTX 2080 Ti
ard is even 2× faster than Tesla P100.
For most of the datasets, Tesla P100 is slightly better than

TX Titan X. The exceptions are Cooctexture, Layout, Mv and Pol
atasets, where Tesla P100 provides more than 15% better accel-
ration. Considering the theoretical single-precision computing
ower, Tesla P100 is about 30% stronger than the former GPU,
hich may explain the time differences. The GTX 780 GPU card is
he oldest among the tested GPU cards and yet generates enough
o accelerate the induction significantly. The GTX 780 is also the
heapest GPU and provides the best performance per price factor
mong the tested GPUs. At the same time, it consumes as much
nergy as other GPUs, and thus, has the worst performance per
att factor. We can also read from Table 2 that each succeeding
newer) GPU card is equipped with faster memory that certainly
elps to obtain better speedups.
Using the same workstation equipped with two 8-core Xeon

PUs (besides a GPU), we also verified how much speedup can
e provided by a multi-threaded CPU implementation. In Table 3,
he execution times of the OpenMP-based parallelization [12] are
iven. We see that it is able to accelerate the induction time a few
imes using 16 OpenMP threads (run on 16 CPU cores). It is com-
etitive with the GPU-based solution only for the smallest dataset
Pol). This multi-threaded CPU acceleration, when combined with
PI and deployed on a computing cluster, was able to speed up

he GMT more [12]. Using 64 cores, such a hybrid MPI+OpenMP
olution provided speedups of up to 23 times for the real-life and
rtificial datasets. For small- and medium-size datasets (e.g., Pol,
ried), the results are competitive or even better than those
rovided by cuGMT. When the number of samples grows, the
ybrid MPI+OpenMP solution is far below the possibilities of the
GPU-supported algorithm.

13
6.2. Artificial datasets

Table 4 presents the average time of induction for different
variants of the Armchair dataset. The results include the execution
times of three GMT versions: cuGMT (using four different GPUs,
from low- to high-end), an OpenMP-accelerated one [12] and a
sequential version. We clearly see that, with the increase in the
number of samples, the time of evolutionary induction grows
(linearly, in most cases). The GPU-supported solution decreases
the time of calculation substantially, e.g., from ∼16 h to ∼11 min
(Archmar100K) or from ∼6.5 days to ∼48 min (Archmar500K). For
and 10 million training samples, the exact time of the sequential

nduction was hard to obtain because of very long computation
imes. On the other hand, we see that cuGMT manages with such
arge-scale datasets, and could handle even larger data.

To show the scale of the improvement, the speedup of cuGMT
nd OpenMP-supported GMT over the sequential version is pre-
ented in Fig. 16. It is clearly visible that the acceleration grows
hen more samples are considered. For the smallest Armchair
onfiguration (10 thousand samples), the provided acceleration
s about 16× for RTX 2080 Ti GPU. It is enough to reduce the
nduction time from ∼1.2 h to ∼4.5 min. When 1 million samples
re processed, the acceleration reaches its peak of about 200×,
ecreasing the calculation time from ∼15 days to only ∼2 h. For
larger number of samples, the speedup saturation is observed.
The observed speedup behavior may be explained by the dif-

erent time contributions of algorithm parts when the number
f samples grows, which is illustrated in Fig. 17. It visualizes the
verage time (as a percentage of total run-time) of data transfer,
PU procedures and the most time-demanding CPU jobs. For
he smallest Armchair configuration, CPU calculations and data
ransport overhead take an important fraction of the total tree
nduction time (about 20%). It is one of the main reasons why
he acceleration is only about 16× in this case. The time of these
wo operations decreases (in relation to other activities) when
he number of samples grows. Simultaneously, the calc_models
rocedure increases its time contribution and, thus, the speedup
rows.
In Fig. 17, we also see that the time contribution of two GPU

ernels (redistribute and estimate_errors) getting more
mportant (rises from ∼5% to ∼20%) when the number of samples
rows. Starting from 5 million samples, their time of execution
ncreases so much that the time factor of the calc_models
rocedure begins to decrease. This is exactly the point where
he speedup saturation is observed. For the two above-mentioned
PU kernels, the occupancy of CUDA cores depends a lot on the
umber of blocks and threads used, among others. We prelim-
narily verified that by using more CUDA blocks/threads, it is
ossible to shift the speedup peak further (e.g., to about 220×
or 512 × 512 configuration). We also observed that the time
f calc_models kernel increased slower starting from 5 million
amples (not proportionally to the number of samples, as for
ewer ones). Reasons may be found in the internal implementa-
ion of applied cuBLAS and cuSOLVER libraries, which we left for
uture investigation.

Table 4 and Fig. 17 show that all GPUs provide substantial
peedup, similarly as observed for the real-life datasets. Here,
owever, the differences between GPUs are more prominent. For
xample, RTX 2080 Ti is almost consistently about 2× better
han Titan X GPU, which coincides exactly with difference of the
omputational power between them.
The use of an artificial problem gave us the possibility to

cale datasets freely. Thus, not only the impact of the number of
amples but also the dimension (number of attributes) was inves-
igated. Fig. 18(a) shows the speedup of cuGMT when the number
ttributes grows (from 2 to 10) while the number of samples is

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

G

R

Table 4
Execution time (in seconds) of the GPU-accelerated, OpenMP-accelerated [12] and sequential versions of GMT [13], using the artificial Armchair dataset. For the fastest
PU and the sequential version, the time is also rounded in minutes/hours/days and presented in brackets.
Dataset RTX 2080 Ti Tesla P100 Titan X GTX 780 OpenMP Sequential

Armchair10K 267 (4.5 min) 431 439 601 1038 4221 (1.2 h)
Armchair50K 432 (7 min) 733 769 1 046 6372 22691 (6.5 h)
Armchair100K 654 (11 min) 1 128 1 206 1 670 16843 57109 (16 h)
Armchair500K 2 870 (48 min) 4 846 5 884 7 420 169601 557545 (6.5 days)
Armchair1M 6 404 (2 h) 10 214 12 842 14 964 407287 1303450 (15 days)
Armchair5M 33 955 (9.5 h) 57 417 71 673 83 799 1987815a 6158273a (71 days)
Armchair10M 70 648 (20 h) 127 022 142 125 175 978 4129295a 12269675a (142 days)

aNote: Execution time estimated based on 1000 first iterations.
Fig. 16. Mean speedup for the artificial Armchair dataset when the number of samples grows.
∼

Fig. 17. The run-time breakdown of the GPU-accelerated algorithm using
TX 2080 Ti GPU for the increasing number of samples of the Armchair dataset.

The average time (as a percentage of total run-time) of the most relevant
parts is shown, both communication between CPU–GPU/CPU–GPU and GPU/CPU
computations are included.

constant. Due to a very long induction time of the sequential
GMT, two cases were calculated (100 thousand and 1 million
samples). We see that the speedup increases when the dataset
14
dimension rises (e.g., to 200× and 550×, correspondingly). The
obtained acceleration is very satisfactory. When, for example, 6
attributes are considered, it allows the induction to be reduced
from ∼39 h to ∼19 min (Armchair100K), and from ∼41 days to
3 h (Armchair1M).
Fig. 18(b) may explain the continuous speedup increase when

the number of attributes grows. It shows the breakdown of ex-
ecution time of the most time-demanding algorithm’s parts for
100 thousand samples. Each time when the dataset dimension
increases, the parallel overhead (data flattening and data transfer)
is less important. At the same time, the time contribution of
the calc_models procedure increases (as it is the only activity
directly related with the number for attributes), while other GPU
procedures have less affect on the induction time.

6.3. Discussion on GPU-based approaches

Other GPU-supported parallelizations of DT inducers can be
found in the literature. Some of them concern the greedy (top-
down) approach [51,52]. Typically, they parallelized the search
of optimal tests (over attributes and nodes) in successive tree
levels during the recursive partitioning of dataset samples. They
speeded up the induction up to 55 times. Although a similar
parallel decomposition strategy (over nodes) could be adapted
in the EA-based inducers, it would not be scalable with respect
to the dataset size. In the global inducer, the size of trees is
usually smaller as well as there is a need for multiple redistri-
butions of training samples over many different trees. Moreover,
the previously published greedy solutions considered classifica-
tion problems (in the leaves classes were located, not regression
models). Thus, the calculation burden was concentrated on find-
ing optimal splits according to a given optimality measure, but
not on the regression models and finally fitness function value
calculations.

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

t
a
t
A

e
g
r
w
i
a
c
s
l
w
5
t
i
o

Fig. 18. The influence of the number of attributes on the time performance of
he cuGMT using GeForce RTX 2080 Ti GPU: (a) mean speedup for 2, 4, 6, 8
nd 10 attributes for the Armchair dataset (100000 and 1000000 samples), (b)
he run-time breakdown (average time as a percentage of total run-time) for
rmchair dataset (100000 samples).

In the literature, we can also find GPU-accelerated inducers of
nsemble (multi-tree) classifiers, e.g., Random Forests [53,54] or
radient boosting DTs [55,56]. They used the simple top-down
ecursive partition approach to build each DT, while the idea
as to combine the predictions of multiple trees together (as

t should better predict than a single tree). The GPU-supported
ccelerations divided calculations in different DTs over CUDA
ores. If only such a decomposition was applied [53], the provided
peedup was up to 30×. In addition, it was achieved only for a
arge number of DTs. When additional decomposition strategies
ere added (similar to being used in the single tree inducers [51,
2]) [54,55] and multiple GPUs were exploited [56], the induction
ime was accelerated more (even to 300 times). For the EA-based
nducer, we also tested different decomposition techniques. One
f the studied cases was a hybrid approach: both individuals and
15
the dataset samples were spread over CUDA cores. However, we
had to significantly increase (artificially) the population size, to
achieve satisfying speedups. Despite that, the solution proposed
in this paper (two-level dataset decomposition) was much more
efficient, particularly for large datasets.

Swarm intelligence (SI) based DT inducers [37] also realize
a global-search strategy. Similarly to EA-based solutions, they
use population-based and iterative calculations. Thus, they suf-
fer similar problems, like ever-growing computational demands
when applied to complex problems. Although, to the best of
our knowledge, there was no direct study on GPU-supported
SI-based DT inducers, many GPU-accelerated implementations
of SI algorithms were proposed, e.g., for ant colony optimiza-
tion (ACO) [78], bee swarm optimization (BSO) [79] and particle
swarm optimization (PSO) [80]. They can be categorized into
four major categories: naive parallel model, multiphase parallel
model, all-GPU parallel model and multiswarm parallel one [59].
Most of them are primarily focused on offloading the fitness
evaluations onto the GPU for parallel running (as our solution
also does) because it is the most time-consuming operation. On
the conceptual level, our parallelization fits the most into two
categories: multiphase parallel model and all-GPU parallel one.

In multiphase parallel models, not only a naive parallel fitness
evaluation is applied but also the remaining parts of the algorithm
(e.g., velocity and position update in PSO [81]) further exploit the
GPU parallelism. Similarly, in our solution, multiple tasks (phases)
are GPU-powered, e.g., fitness evaluation, dipoles searching or
regression model construction, providing better leverage of GPU
computing resources and thus, better speedup. Results in Figs. 15,
17 and 18(b) show that the execution time of remaining serial
(not parallelized) parts of the algorithm is negligible.

On the other side, all-GPU parallel models also move all serial
code onto the GPU. This way, the overhead of communication
between CPU–GPU/GPU–CPU and frequent kernel launch can be
decreased significantly, and the overall performance can get im-
proved. However, combining multiple kernels into a single one
may lead to difficulties with data synchronization between dif-
ferent thread blocks. To tackle this issue, all threads can be
organized into one block, as it was done in a GPU-based PSO [82].
Such a mechanism limits the usage of GPU resources to a single
streaming multi-processor and can be reasonable only for a small
swarm size. In our inducer, we also move most calculations onto
the GPU, while the CPU mainly controls the evolutionary pro-
cess. However, in order to provide data synchronization between
subsequent phases and use full GPU resources, we decided to
divide calculations into multiple kernels. What we could improve
in the future is to move a serial code of genetic operators onto the
GPU. Then, the transfer of DTs between CPU–GPU would not be
needed. Results in Figs. 15, 17 and 18(b) suggest that then the
communication overhead would decrease. It could be reasonable
for smaller datasets. However, no meaningful performance im-
provement would be observed for large-scale data because then
the communication overhead is negligible.

7. Conclusion

The paper concerns an evolutionary approach in induction
of model trees. Such a population-based and iterative way of
induction provides global exploration that searches significantly
simpler decision trees and at least as accurate as induced by
the state-of-the-art greedy alternatives. However, the global ap-
proach is much more computationally demanding, and thus hard
to apply to big data mining directly. We address this problem
and propose a GPU-supported inducer. Experimental validation is
performed with real-life and artificial datasets. Both the data size
and dimension are investigated. The results clearly show that the

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503

c
s
f
t
r
o
u

o
F
h
i
d
w
c
t
f
e
a
p
i
d

C

a
w
–
W

omputational barrier can be overcome. The GPU-based solution
peeds up the inducer significantly (induction time decreases
rom hours to minutes or from days to hours). The global induc-
ion of model trees is now also possible for large-scale data (in a
easonable time), which until now was reserved for greedy meth-
ds. Moreover, it is achieved without costly computer clusters but
sing only a single workstation with at least a medium-class GPU.
We see many promising directions for future research. One

f these directions focuses on speeding up the solution further.
or example, a multi-GPU approach, a Spark-based one, or a
ybrid CPU/GPU [83] may provide additional time performance
mprovement and make the evolutionary approach as fast as top-
own inducers. Another direction is to apply a reuse strategy that
as shown to efficiently accelerate the evolutionary induction of
lassification trees [9]. Moreover, such an approach may allow us
o observe and better understand the evolutionary process, e.g., to
ollow the similarity factor between trees in subsequent gen-
rations. On the other hand, a multi-tree representation would
lso be an attractive field of research. It assumes that similar
arts of trees would be represented by partially shared structures
n memory. It would provide an additional way to observe the
ynamism of evolution.

RediT authorship contribution statement

Krzysztof Jurczuk: Conceptualization, Data curation, Formal
nalysis, Funding acquisition, Investigation, Methodology, Soft-
are, Validation, Visualization, Writing – original draft, Writing
review & editing. Marcin Czajkowski: Data curation, Software,
riting – original draft. Marek Kretowski: Conceptualization,

Funding acquisition, Validation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work was supported by Bialystok University of Tech-
nology, Poland under the Grant WZ/WI-IIT/3/2020 founded by
Ministry of Science and Higher Education.

Appendix A. Pseudo code of main procedures/kernels of the
GPU-accelerated approach

Listing 1: Pseudo code of the evolutionary loop and CPU–GPU
interaction.

1 procedure evaluateIndividualAtGPU
2 input: indiv
3 output: updatedIndiv
4 begin
5 //data (decision tree) flattening (SoA) and coping to GPU
6 indivTab=copyTreeToTable(indiv);
7 allocateMemoryAtGPU(indivTab); //if no optimization
8 sendDataToGPU(indivTab);
9

10 redistribute<<N_BLOCKS, N_THREADS>>(indivTab,...);
11 cudaDeviceSynchronize();
12
13 separate(objToLeafTab, objIdxTab, ...);
14
15 reorganize<<N_BLOCKS, N_THREADS>>(objToLeafTabSorted, ...);
16 cudaDeviceSynchronize();
17
18 recvDataFromGPU(nObjsInNodeTab);
19 indiv.setNObjsInNodes(nObjsInNodeTab);
20
21 calc_models(indiv.getRoot(), datasetTabMatrixX, ...);
22
16
23 estimate_errors<<N_BLOCKS, N_THREADS>>(datasetTabMatrixC,..);
24 cudaDeviceSynchronize();
25
26 reduction<<1, N_BLOCKS>>(indivErrorTabG, ...)
27 cudaDeviceSynchronize();
28
29 recvDataFromGPU(errors);
30 recvDataFromGPU(dipoles);
31
32 updatedIndiv=updateIndividual(indiv, errors, dipoles);
33 deallocateMemoryAtGPU(indivTab); //if no optimization
34 end
35
36 procedure main
37 ...
38 //if optimization
39 //allocate memory for individuals
40 //init and allocate memory for CUSOLVER, CUBLAS
41
42 //transform dataset to SoA and coping to GPU
43 datasetTab=copyDatasetToSoA(dataset);
44 allocateMemoryAtGPU(datasetTab);
45 sendDataToGPU(datasetTab);
46
47 createInitPopulation();
48 evaluatePopulation();
49 selection();
50
51 //evolutionary loop
52 while !stopCondition do
53
54 //loop over pairs of individuals
55 for indivPair in idividualPairs do
56 crossover(indivPair);
57 evaluateIndividualAtGPU(indivPair.indiv1);
58 evaluateIndividualAtGPU(indivPair.indiv2);
59 end for
60
61 //loop over individuals
62 for indiv in individuals do
63 mutation(indiv);
64 evaluateIndividualAtGPU(indiv);
65 end for
66 selection();
67 end while
68
69 deallocateMemoryAtGPU(datasetTab);
70 ...
71 end

Listing 2: Pseudo code of the GPU-supported procedures and
kernels.

1 __global__ procedure redistribute
2 input: indivTab, datasetTab
3 output: objToLeafTab, nObjsInNodeTab
4 begin
5 int nObjsToCheck=nObjs/gridDim.x/blockDim.x;
6 int startingObjIdx=blockIdx.x*nObjs/gridDim.x+threadIdx.x;
7
8 int nodeIdx=0;
9 int objIdx=startingObjIdx;

10 Sample sample;
11 Node node;
12
13 //redistribute samples among leaves
14 for i = 1 to nObjsToCheck do
15 sample=dataset[objIdx]; //first attribute value
16 nodeIdx=0; //root index
17 while true do
18 node=indivTab[nodeIdx]; //attribute in a node
19 if node is a leaf then
20 //remember leaf index
21 objToLeafTab[objIdx]=nodeIdx;
22 //increment number of samples in a leaf
23 atomicAdd(&nObjsInNodeTab[nodeIdx], 1);
24 break;
25 else
26 //move to one of the children nodes
27 if sample[attrShift(node)] > node[valueShift] then
28 nodeIdx=nodeIdx*2+1; //left child
29 else
30 nodeIdx=nodeIdx*2+2; //right child
31 end if
32 end if

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503
33 end while
34 objIdx+=blockDim.x;
35 end for
36 end
37
38 procedure separate
39 input: objToLeafTab, objIdxTab={0,1,2,...,nObjs-1}
40 output: objToLeafTabSorted, objIdxTabSorted
41 begin
42 setTempStorage(tempStor, tempStorSize);//if no optimization
43 allocateTempStorage();//if no optimization
44
45 //sorting
46 cub::DeviceRadixSort:SortPairs(tempStor, tempStorSize,

objToLeafTab, objToLeafTabSorted, objIdxTab,
objIdxTabSorted);

47
48 deallocTempStorage();//if no optimization
49 end
50
51 __global__ procedure reorganize
52 input: objToLeafTabSorted, objIdxTabSorted
53 ouput: datasetTabMatrixX, datasetTabMatrixY
54 begin
55 int nObjsToMove=nObjs/gridDim.x/blockDim.x;
56 int startingPos=blockIdx.x*nObjs/gridDim.x+threadIdx.x;
57
58 int objPos=startingPos;
59 Sample sample;
60 Node leaf;
61
62 //reorganize samples into matrices for MLR
63 for i=1 to nObjsToMove do
64 leafIdx=objToLeafTabSorted[objPos];
65 objIdx=objIdxTabSorted[objPos];
66
67 sample=datasetTab[objIdx]; //first attribute value
68 leaf=indivTab[leafIdx];
69 //if the sample is in a leaf to be updated
70 if leaf[updateShift] then
71 //starting point for sample attributes
72 leafMatrixX=sampleMatrixXShift(leafIdx,objIdx);
73 datasetTabMatrixX[leafMatrixX]=1.0;
74 int k=1;
75 //rewrite attribute values
76 for j=1 to nAttrs-1 do
77 //if the attribute is currently used in a model
78 if leaf[onoffShift(j)] then
79 datasetTabMatrixX[leaftMatrixX+leafAttrShift(k,leafIdx)]=

sample[attrShift(j)];
80 k++;
81 end if
82 end for
83 datasetTabMatrixY[objIdx]=sample[attrShift(nAttrs)];
84 end if
85 objPos+=blockDim.x;
86 end for
87 end
88
89 procedure calc_models
90 input: node, datasetTabMatrixX, datasetTabMatrixY
91 output: datasetTabMatrixC //model coefficients
92 begin
93 const float alpha=1;
94
95 if node is a leaf then
96 if node is modified then
97 int m=node->nSamples;
98 int n=node->nModelAttrs;
99 X=datasetTabMatrixX+shiftMLRMatrix(node,n);

100 Y=datasetTabMatrixY+shiftMLRMatrix(node);
101 const int ldx=m, ldy=m;
102
103 // initialize the CUSOLVER, CUBLAS, if no optimization
104 initMLRLibraries();
105 allocateMemoryAtGPU(tau,work,lwork,devInfo,mt_cublasH);
106
107 //calculate the size of work buffer needed
108 cusolverDnSgeqrf_bufferSize(handle, m, n, X, ldx, lwork);
109
110 //MLR calculations
111 //step1: X = QR with CUSOLVER
112 cusolverDnSgeqrf(handleS, m, n, X, ldx, tau, work, lwork,

devInfo);
113 cudaDeviceSynchronize();
114
17
115 //step2: z = (Q^T)Y with CUSOLVER, z is m x 1
116 cusolverDnSormqr(handleS, CUBLAS_SIDE_LEFT, CUBLAS_OP_T, m,

1, MIN(m,n), X, ldx, tau, Y, ldy, work, lwork,devInfo);
117 cudaDeviceSynchronize();
118
119 //step3: Solve RC = z for C with CUBLAS, C is n x 1
120 cublasStrsm(handleB, CUBLAS_SIDE_LEFT,

CUBLAS_FILL_MODE_UPPER, CUBLAS_OP_N,
CUBLAS_DIAG_NON_UNIT, n, 1, alpha, X, ldx, Y, ldy);

121 end if
122 else
123 if node->left then //has a left child
124 calc_models(node->left);
125 end if
126 if node->right then //has a right child
127 calc_models(node->right);
128 end if
129 end if
130 datasetTabMatrixC=datasetTabMatrixY;
131 end
132
133 __global__ procedure estimate_errors
134 input: datasetTabMatrixC
135 output: indivErrorTabG, indivDipolesTabG
136 begin
137 int nObjsToCalc=nObjs/gridDim.x/blockDim.x;
138 int startingPos=blockIdx.x*nObjs/gridDim.x+threadIdx.x;
139
140 __shared__ float indivErrorTab[N_NODES];
141 __shared__ unsigned int indivDipolesTab[N_NODES];
142
143 int objPos=startingPos;
144 Sample sample;
145 Node leaf;
146 C=datasetTabMatrixC;
147 for i=1 to nObjsToCalc do
148 leafIdx=objToLeafTabSorted[objPos];
149 objIdx=objIdxTabSorted[objPos];
150
151 sample=datasetTab[objIdx]; //first attribute value
152 leaf=indivTab[leafIdx];
153 startLeafMLR=leaf[startMLRShift];
154
155 //calc error
156 int prediction=C[startLeafMLR];
157 int k=1;
158 for j=1 to nAttrs-1 do
159 //if the attribute is currently used in a model
160 if leaf[onoffShift(j)] then
161 prediction+=C[startLeafMLR+k]*sample[attrShift(j)];
162 k++;
163 end if
164 end for
165 errPow2=(prediction-sample[attrShift(nAttrs)])^2;
166
167 //sum of errors
168 atomicAdd(&indivErrorTab[leafIdx], errPow2);
169
170 //sample for a dipole
171 atomicCAS(&indivDipolesTab[leafIdx], 0, objIdx);
172 objPos+=blockDim.x;
173 end for
174
175 __syncthreads();
176 //copy data from shared to global memory
177 if threadIdx.x==0 then
178 for i=0 to N_NODES-1 do
179 indivErrorTabG[blockIdx.x*N_NODES+i]=indivErrorTab[i];
180 indivDipolesTabG[blockIdx.x*N_NODES+i]=indivDipolesTab[i];
181 end for
182 //or by memcpy
183 end if
184 end
185
186 __global__ procedure reduction
187 input: indivErrorTabG, indivDipolesTabG
188 output: indivDipolesTabG, indivErrTabG
189 begin
190 __shared__ float indivErrTab_Sum[N_NODES];
191 __shared__ unsigned int indivDipolesTabMin[N_NODES];
192 __shared__ unsigned int indivDipolesTabMax[N_NODES];
193
194 //reduce errors
195 for i=0 to N_NODES-1 do
196 atomicAdd(&indivErrTab_Sum[i], indivErrorTabG[threadIdx.x*

N_NODES+i]);

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503
197 end for
198
199 //reduce dipoles
200 predTab = datasetTab[attrShift(nAttrs)];
201 for i=0 to N_NODES-1 do
202 if indivDipolesTabG[threadIdx.x*N_NODES+i] is not empty
203 oldMinObjIdx=indivDipolesTabMin[i];
204 oldMaxObjIdx=indivDipolesTabMax[i];
205 newObjIdx=indivDipolesTabG[threadIdx.x*N_NODES+i];
206
207 if predTab[oldMinObjIdx] > predTab[newObjIdx] then
208 atomicExch(&indivDipolesTabMin[i], newObjIdx);
209 end if
210 if predTab[oldMaxObjIdx] < predTab[newObjIdx] then
211 atomicExch(&indivDipolesTabMax[i], newObjIdx);
212 end if
213 end if
214 end for
215
216 __syncthreads();
217 //propagate
218 if threadIdx.x==0 then
219 //propagate error
220 for i=N_NODES-1 to 1 do
221 if i%2 then
222 indivErrTab_Sum[i/2-1]+=indivErrTab_Sum[i];
223 else
224 indivErrTab_Sum[i/2]+=indivErrTab_Sum[i];
225 end if
226 end for
227 //propagate dipoles
228 for i=N_NODES/2-1 to 0 do
229 if rand(1) then
230 indivDipolesTabMin[i]=indivDipolesTabMin[2*i+1];
231 indivDipolesTabMax[i]=indivDipolesTabMax[2*i+1];
232 else
233 indivDipolesTabMin[i]=indivDipolesTabMin[2*i+2];
234 indivDipolesTabMax[i]=indivDipolesTabMax[2*i+2];
235 end if
236 end for
237
238 //copy data from shared to global memory
239 //in analogy like in estimate_errors kernel
240 //indivDipolesTabG, indivErrTabG
241 end if
242 end

References

[1] T. Condie, P. Mineiro, N. Polyzotis, M. Weimer, Machine learning on big
data, in: 2013 IEEE 29th International Conference on Data Engineering
(ICDE), 2013, pp. 1242–1244.

[2] S. Kotsiantis, Decision trees: a recent overview, Artif. Intell. Rev. 39 (4)
(2013) 261–283..

[3] W.Y. Loh, Fifty years of classification and regression trees, Internat. Statist.
Rev. 82 (3) (2014) 329–348.

[4] R.C. Barros, M.P. Basgalupp, A.C. De Carvalho, A.A. Freitas, A survey of
evolutionary algorithms for decision-tree induction, IEEE Trans. SMC C 42
(3) (2012) 291–312.

[5] M. Kretowski, Evolutionary Decision Trees in Large-Scale Data Mining,
Springer, 2019.

[6] R.C. Barros, D.D. Ruiz, M.P. Basgalupp, Evolutionary model trees for han-
dling continuous classes in machine learning, Inform. Sci. 181 (5) (2011)
954–971.

[7] K. Jurczuk, M. Czajkowski, M. Kretowski, Multi-GPU approach to global
induction of classification trees for large-scale data mining, Appl. Intell.
51 (2021) 5683–5700.

[8] K. Jurczuk, M. Czajkowski, M. Kretowski, Evolutionary induction of a
decision tree for large-scale data: a GPU-based approach, Soft Comput.
21 (24) (2017) 7363–7379.

[9] K. Jurczuk, M. Czajkowski, M. Kretowski, Fitness evaluation reuse for
accelerating GPU-based evolutionary induction of decision trees, Int. J. High
Perform. Comput. Appl. 35 (1) (2021) 20–32.

[10] D. Storti, M. Yurtoglu, CUDA for Engineers : An Introduction to
High-Performance Parallel Computing, Addison-Wesley, New York, 2016.

[11] N. Wilt, CUDA Handbook: A Comprehensive Guide to GPU Programming,
Addison-Wesley, Upper Saddle River, NJ, 2013.
18
[12] M. Czajkowski, K. Jurczuk, M. Kretowski, Hybrid parallelization of evolu-
tionary model tree induction, in: L. Rutkowski, M. Korytkowski, R. Scherer,
R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada (Eds.), Artificial Intelligence and
Soft Computing - ICAISC 2016, in: Lecture Notes in Computer Science, vol.
9692, Springer, Cham, 2016, pp. 370–379.

[13] M. Czajkowski, M. Kretowski, Evolutionary induction of global model trees
with specialized operators and memetic extensions, Inform. Sci. 288 (2014)
153–173.

[14] M. Czajkowski, M. Kretowski, The role of decision tree representation in
regression problems – an evolutionary perspective, Appl. Soft Comput. 48
(2016) 458–475.

[15] M. Czajkowski, M. Czerwonka, M. Kretowski, Cost-sensitive global model
trees applied to loan charge-off forecasting, Decis. Support Syst. 74 (2015)
57–66.

[16] M. Czajkowski, M. Kretowski, Decision tree underfitting in mining of gene
expression data. An evolutionary multi-test tree approach, Expert Syst.
Appl. 137 (2019) 392–404.

[17] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, C.A.C. Coello, A survey of
multiobjective evolutionary algorithms for data mining: Part I, IEEE Trans.
Evol. Comput. 18 (1) (2014) 4–19.

[18] L. Rokach, O. Maimon, Data Mining with Decision Trees: Theory and
Applications, World Scientific, Singapore, 2014.

[19] R. Rivera-Lopez, J. Canul-Reich, E. Mezura-Montes, M.A. Cruz-Chávez,
Induction of decision trees as classification models through metaheuristics,
Swarm Evol. Comput. 69 (2022) 101006.

[20] J.R. Quinlan, Learning with Continuous Classes, World Scientific, 1992, pp.
343–348.

[21] F.M. Ortuño, O. Valenzuela, B. Prieto, M.J. Saez-Lara, C. Torres, H. Pomares, I.
Rojas, Comparing different machine learning and mathematical regression
models to evaluate multiple sequence alignments, Neurocomputing 164
(2015) 123–136.

[22] A. Fakhari, A.M.E. Moghadam, Combination of classification and regression
in decision tree for multi-labeling image annotation and retrieval, Appl.
Soft Comput. 13 (2) (2013) 1292–1302.

[23] J. Liu, C. Sui, D. Deng, J. Wang, B. Feng, W. Liu, C. Wu, Representing
conditional preference by boosted regression trees for recommendation,
Inform. Sci. 327 (2016) 1–20.

[24] L. Hyafil, R.L. Rivest, Constructing optimal binary decision trees is
NP-complete, Inform. Process. Lett. 5 (1) (1976) 15–17.

[25] L. Rokach, O. Maimon, Top-down induction of decision trees classifiers - a
survey, IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) 35 (4) (2005) 476–487.

[26] F. Esposito, D. Malerba, G. Semeraro, A comparative analysis of methods
for pruning decision trees, IEEE Trans. Pattern Anal. Mach. Intell. 19 (5)
(1997) 476–491.

[27] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and
regression trees, Wadsworth, 1984.

[28] Q. Liu, X. Li, H. Liu, Z. Guo, Multi-objective metaheuristics for discrete
optimization problems: A review of the state-of-the-art, Appl. Soft Comput.
93 (2020) 106382.

[29] J.R. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection, MIT Press, 1992.

[30] J.R. Koza, Concept formation and decision tree induction using the genetic
programming paradigm, in: H.-P. Schwefel, R. Männer (Eds.), Parallel Prob-
lem Solving from Nature, Springer Berlin Heidelberg, Berlin, Heidelberg,
1991, pp. 124–128.

[31] J. Petke, S.O. Haraldsson, M. Harman, W.B. Langdon, D.R. White, J.R.
Woodward, Genetic improvement of software: A comprehensive survey,
IEEE Trans. Evol. Comput. 22 (3) (2018) 415–432.

[32] G. Fan, J.B. Gray, Regression tree analysis using TARGET, J. Comput. Graph.
Statist. 14 (1) (2005) 206–218.

[33] B. Biswal, H. Behera, R. Bisoi, P. Dash, Classification of power quality
data using decision tree and chemotactic differential evolution based fuzzy
clustering, Swarm Evol. Comput. 4 (2012) 12–24.

[34] H.-G. Beyer, S. Finck, T. Breuer, Evolution on trees: On the design of an
evolution strategy for scenario-based multi-period portfolio optimization
under transaction costs, Swarm Evol. Comput. 17 (2014) 74–87.

[35] F.E. Otero, A.A. Freitas, C.G. Johnson, Inducing decision trees with an
ant colony optimization algorithm, Appl. Soft Comput. 12 (11) (2012)
3615–3626.

[36] J.E. Fieldsend, Optimizing decision trees using multi-objective particle
swarm optimization, in: C.A.C. Coello, S. Dehuri, S. Ghosh (Eds.), Swarm
Intelligence for Multi-Objective Problems in Data Mining, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009, pp. 93–114.

[37] I. Bida, S. Aouat, A new approach based on bat algorithm for inducing
optimal decision trees classifiers, in: A. Rocha, M. Serrhini (Eds.), Informa-
tion Systems and Technologies To Support Learning, Springer International
Publishing, Cham, 2019, pp. 631–640.

[38] D. Yuen, J. Wang, L. Johnsson, C.-H. Chi, Y. Shi, GPU Solutions to Multi-Scale
Problems in Science and Engineering, Springer, 2013.

http://refhub.elsevier.com/S1568-4946(22)00049-7/sb1
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb1
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb1
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb1
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb1
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb2
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb2
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb2
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb3
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb3
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb3
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb4
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb4
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb4
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb4
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb4
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb5
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb5
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb5
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb6
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb6
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb6
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb6
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb6
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb7
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb7
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb7
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb7
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb7
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb8
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb8
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb8
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb8
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb8
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb9
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb9
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb9
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb9
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb9
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb10
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb10
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb10
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb11
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb11
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb11
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb12
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb12
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb12
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb12
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb12
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb12
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb12
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb12
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb12
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb13
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb13
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb13
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb13
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb13
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb14
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb14
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb14
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb14
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb14
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb15
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb15
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb15
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb15
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb15
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb16
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb16
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb16
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb16
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb16
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb17
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb17
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb17
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb17
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb17
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb18
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb18
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb18
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb19
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb19
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb19
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb19
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb19
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb20
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb20
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb20
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb21
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb21
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb21
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb21
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb21
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb21
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb21
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb22
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb22
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb22
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb22
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb22
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb23
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb23
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb23
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb23
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb23
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb24
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb24
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb24
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb25
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb25
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb25
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb26
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb26
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb26
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb26
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb26
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb27
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb27
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb27
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb28
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb28
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb28
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb28
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb28
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb29
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb29
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb29
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb30
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb30
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb30
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb30
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb30
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb30
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb30
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb31
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb31
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb31
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb31
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb31
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb32
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb32
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb32
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb33
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb33
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb33
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb33
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb33
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb34
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb34
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb34
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb34
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb34
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb35
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb35
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb35
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb35
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb35
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb36
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb36
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb36
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb36
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb36
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb36
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb36
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb37
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb37
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb37
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb37
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb37
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb37
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb37
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb38
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb38
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb38

K. Jurczuk, M. Czajkowski and M. Kretowski Applied Soft Computing 119 (2022) 108503
[39] Y. Djenouri, D. Djenouri, Z. Habbas, Intelligent mapping between GPU and
cluster computing for discovering big association rules, Appl. Soft Comput.
65 (2018) 387–399.

[40] A. Cano, A survey on graphic processing unit computing for large-scale
data mining, Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 8 (1) (2018)
e1232.

[41] W.-B. Qiao, J.-C. Créput, Component-based 2-/3-dimensional nearest neigh-
bor search based on Elias method to GPU parallel 2D/3D Euclidean
Minimum Spanning Tree Problem, Appl. Soft Comput. 100 (2021) 106928.

[42] D.M. Chitty, Improving the performance of GPU-based genetic program-
ming through exploitation of on-chip memory, Soft Comput. 20 (2) (2016)
661–680.

[43] A. Cano, A. Zafra, S. Ventura, Speeding up multiple instance learning
classification rules on GPUs, Knowl. Inf. Syst. 44 (1) (2015) 127–145.

[44] D.M. Chitty, Fast parallel genetic programming: multi-core CPU versus
many-core GPU, Soft Comput. 16 (10) (2012) 1795–1814.

[45] A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel
Computing, Addison-Wesley, 2003.

[46] S. Tsutsui, P. Collet, Massively Parallel Evolutionary Computation on
GPGPUs, Springer, Berlin, 2013.

[47] T.V. Luong, N. Melab, E.-G. Talbi, GPU-based island model for evolutionary
algorithms, in: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’10, 2010, pp. 1089–1096.

[48] M.A. Franco, N. Krasnogor, J. Bacardit, Speeding up the evaluation of
evolutionary learning systems using GPGPUs, in: Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation, GECCO’10,
2010, pp. 1039–1046.

[49] N. Soca, J.L. Blengio, M. Pedemonte, P. Ezzatti, PUGACE, a cellular evolu-
tionary algorithm framework on GPUs, in: IEEE Congress on Evolutionary
Computation, 2010, pp. 1–8.

[50] M.A. Franco, J. Bacardit, Large-scale experimental evaluation of GPU
strategies for evolutionary machine learning, Inform. Sci. 330 (C) (2016)
385–402.

[51] W.T. Lo, Y.S. Chang, R.K. Sheu, C.C. Chiu, S.M. Yuan, CUDT: A CUDA based
decision tree algorithm, Sci. World J. 2014 (2014).

[52] D. Strnad, A. Nerat, Parallel construction of classification trees on a GPU,
Concurr. Comput.: Pract. Exper. 28 (5) (2016) 1417–1436.

[53] H. Grahn, N. Lavesson, M.H. Lapajne, D. Slat, CudaRF: A CUDA-based
implementation of random forests, in: 2011 9th IEEE/ACS International
Conference on Computer Systems and Applications (AICCSA), 2011, pp.
95–101.

[54] D. Marron, A. Bifet, G.D.F. Morales, Random forests of very fast decision
trees on GPU for mining evolving big data streams, in: Proceedings of the
Twenty-First European Conference on Artificial Intelligence, in: ECAI’14,
Amsterdam, The Netherlands, 2014, pp. 615–620.

[55] M. Rory, F. Eibe, Accelerating the xgboost algorithm using GPU computing,
PeerJ Comput. Sci. 3 (2017) e127.

[56] Z. Wen, J. Shi, B. He, J. Chen, K. Ramamohanarao, Q. Li, Exploiting GPUs
for efficient gradient boosting decision tree training, IEEE Trans. Parallel
Distrib. Syst. 30 (12) (2019) 2706–2717.

[57] K. Jurczuk, M. Czajkowski, M. Kretowski, GPU-accelerated evolutionary
induction of regression trees, in: C. Martín-Vide, R. Neruda, M.A. Vega-
Rodríguez (Eds.), Theory and Practice of Natural Computing, in: LNCS, vol.
10687, Springer, 2017, pp. 87–99.

[58] D. Reska, K. Jurczuk, M. Kretowski, Evolutionary induction of classification
trees on spark, in: L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R.
Tadeusiewicz, J.M. Zurada (Eds.), Artificial Intelligence and Soft Computing,
in: LNCS, vol. 10841, Springer, 2018, pp. 514–523.
19
[59] Y. Tan, K. Ding, A survey on GPU-based implementation of
swarm intelligence algorithms, IEEE Trans. Cybern. 46 (9) (2016)
2028–2041.

[60] Z. Michalewicz, Genetic Algorithms + Data Structures=Evolution Programs,
Springer, 1996.

[61] M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in
evolutionary algorithms: A survey, ACM Comput. Surv. 45 (3) (2013) 35.

[62] M. Kretowski, M. Grzes, Evolutionary induction of mixed decision trees,
Int. J. Data Warehous. Min. 3 (4) (2007) 68–82.

[63] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second ed.,
Wiley-Interscience, 2000.

[64] M. Czajkowski, M. Kretowski, A multi-objective evolutionary approach to
Pareto-optimal model trees, Soft Comput. 23 (5) (2019) 1423–1437.

[65] N. Satish, M. Harris, M. Garland, Designing efficient sorting algorithms for
manycore GPUs, in: Proceedings of the 2009 IEEE International Symposium
on Parallel and Distributed Processing, IPDPS ’09, 2009, pp. 1–10.

[66] D.P. Singh, I. Joshi, J. Choudhary, Survey of GPU based sorting algorithms,
Int. J. Parallel Program. 46 (6) (2018) 1017–1034.

[67] D. Merrill, CUB V1.8.0 a library of warp-wide, block-wide, and device-wide
GPU parallel primitives, NVIDIA Res. (2020) URL http://nvlabs.github.io/
cub/.

[68] G. Golub, C. Van Loan, Matrix Computations, third ed., The Johns Hopkins
University Press, Baltimore, 1996.

[69] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical
Recipes: The Art of Scientific Computing, third ed., Cambridge University
Press, New York, 2007.

[70] G. Mei, H. Tian, Impact of data layouts on the efficiency of GPU-accelerated
IDW interpolation, SpringerPlus 5 (1) (2016) 1–18.

[71] R. Strzodka, Abstraction for AoS and SoA layout in C++, in: W.W. Hwu (Ed.),
GPU Computing Gems Jade Edition, Morgan Kaufmann, 2012, pp. 429–441.

[72] L. Torgo, Regression datasets, URL https://www.dcc.fc.up.pt/~ltorgo/
Regression/DataSets.html.

[73] D. Dua, E. Karra Taniskidou, UCI machine learning repository, 2017, URL
http://archive.ics.uci.edu/ml.

[74] I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, The WEKA Workbench. Online
Appendix for ‘‘Data Mining, Fourth Edition: Practical Machine Learning
Tools and Techniques’’, Morgan Kaufmann, 2016.

[75] NVIDIA, NVIDIA developer zone - CUDA toolkit documentation, 2020, URL
https://docs.nvidia.com/cuda/.

[76] O. Sagi, L. Rokach, Ensemble learning: A survey, WIREs Data Min. Knowl
Discov. 8 (4) (2018) e1249.

[77] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (2) (1978)
461–464.

[78] J.M. Cecilia, A. Llanes, J.L. Abellan, J. Gomez-Luna, L.-W. Chang, W.-M.W.
Hwu, High-throughput Ant Colony Optimization on graphics processing
units, J. Parallel Distrib. Comput. 113 (2018) 261–274.

[79] Y. Djenouri, P. Fournier-Vigerand, J.C.-W. Lin, D. Djenouri, A. Belhadi, GPU-
Based swarm intelligence for Association Rule Mining in big databases,
Intell. Data Anal. 23 (1) (2019) 57–76.

[80] H. Liu, Z. Wen, W. Cai, FastPSO: TOwards efficient swarm intelligence al-
gorithm on GPUs, in: 50th International Conference on Parallel Processing,
in: ICPP 2021, 2021.

[81] Y. Zhou, Y. Tan, GPU-based parallel particle swarm optimization, in: 2009
IEEE Congress on Evolutionary Computation, 2009, pp. 1493–1500.

[82] L. Mussi, F. Daolio, S. Cagnoni, Evaluation of parallel particle swarm
optimization algorithms within the CUDA™ architecture, Inform. Sci. 181
(20) (2011) 4642–4657.

[83] M. Gowanlock, Hybrid KNN-join: Parallel nearest neighbor searches ex-
ploiting CPU and GPU architectural features, J. Parallel Distrib. Comput.
149 (2021) 119–137.

http://refhub.elsevier.com/S1568-4946(22)00049-7/sb39
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb39
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb39
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb39
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb39
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb40
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb40
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb40
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb40
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb40
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb41
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb41
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb41
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb41
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb41
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb42
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb42
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb42
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb42
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb42
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb43
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb43
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb43
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb44
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb44
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb44
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb45
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb45
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb45
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb46
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb46
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb46
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb49
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb49
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb49
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb49
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb49
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb50
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb50
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb50
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb50
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb50
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb51
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb51
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb51
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb52
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb52
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb52
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb53
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb53
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb53
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb53
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb53
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb53
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb53
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb54
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb54
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb54
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb54
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb54
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb54
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb54
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb55
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb55
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb55
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb56
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb56
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb56
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb56
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb56
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb57
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb57
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb57
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb57
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb57
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb57
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb57
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb58
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb58
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb58
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb58
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb58
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb58
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb58
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb59
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb59
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb59
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb59
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb59
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb60
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb60
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb60
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb61
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb61
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb61
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb62
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb62
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb62
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb63
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb63
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb63
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb64
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb64
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb64
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb66
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb66
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb66
http://nvlabs.github.io/cub/
http://nvlabs.github.io/cub/
http://nvlabs.github.io/cub/
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb68
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb68
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb68
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb69
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb69
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb69
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb69
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb69
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb70
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb70
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb70
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb71
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb71
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb71
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb74
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb74
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb74
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb74
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb74
https://docs.nvidia.com/cuda/
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb76
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb76
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb76
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb77
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb77
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb77
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb78
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb78
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb78
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb78
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb78
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb79
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb79
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb79
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb79
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb79
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb80
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb80
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb80
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb80
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb80
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb81
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb81
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb81
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb82
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb82
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb82
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb82
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb82
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb83
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb83
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb83
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb83
http://refhub.elsevier.com/S1568-4946(22)00049-7/sb83

	GPU-based acceleration of evolutionary induction of model trees
	Introduction
	Background
	Decision trees
	Model trees
	Induction of decision trees

	GPU computing using CUDA
	Related work
	Parallelization in EA
	Parallelization of DT induction

	Global Model Tree system - GMT
	Representation
	Initialization and selection
	Genetic operators
	Fitness function

	CUDA-accelerated GMT - cuGMT
	GPU-based parallelization overview
	Decomposition technique
	Six GPU-supported procedures
	redistribute procedure
	separate procedure
	reorganize procedure
	calc_models procedure
	estimate_errors and reduction procedures

	Memory and implementation aspects

	Experimental setup
	Datasets details
	Hardware and software details
	Parameters details and measurement methodology

	Results and discussion
	Real-life datasets
	Artificial datasets
	Discussion on GPU-based approaches

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Pseudo code of main procedures/kernels of the GPU-accelerated approach
	References

