
Multi-Test Decision Trees for

Gene Expression Data Analysis

Marcin Czajkowski1, Marek Grześ2, and Marek Kretowski1

1 Faculty of Computer Science, Bialystok University of Technology,
Wiejska 45a, 15-351, Bialystok, Poland

{m.czajkowski,m.kretowski}@pb.edu.pl
2 School of Computer Science, University of Waterloo,

200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
mgrzes@cs.uwaterloo.ca

Abstract. This paper introduces a new type of decision trees which are
more suitable for gene expression data. The main motivation for this
work was to improve the performance of decision trees under a possibly
small increase in their complexity. Our approach is thus based on uni-
variate tests, and the main contribution of this paper is the application
of several univariate tests in each non-terminal node of the tree. In this
way, obtained trees are still relatively easy to analyze and understand,
but they become more powerful in modelling high dimensional microar-
ray data. Experimental validation was performed on publicly available
gene expression datasets. The proposed method displayed competitive
accuracy compared to the commonly applied decision tree methods.

Keywords: Decision trees, classification, gene expression, univariate
tests.

1 Introduction

Decision trees represent one of the most popular classification techniques [19,20].
Their chief advantage is the fact that they are easy to understand by humans
which makes them particularly useful when the aim of modelling is to understand
the underlying processes of the environment. Decision trees are also applicable
when the data does not satisfy rigorous assumptions required by more traditional
methods [15,7]. However, existing attempts to apply decision trees to the clas-
sification of gene expression data showed that standard decision tree algorithms
are not sufficient for inducing competitive classifiers [14].

In this paper, we introduce a new type of decision trees that allow testing
more than one feature in a single node of the tree. Every split of such trees is
composed of a set of univariate tests and is called a multi-test split. Trees which
are based on such tests are called Multi-Test Decision Trees (MTDT ).

1.1 Background and Motivation

Gene expression data is extremely challenging for computational tools and math-
ematical modelling [21]. Each observation is described by a high dimensional

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 154–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



MTDT for Gene Expression Data Analysis 155

feature vector with a number of features reaching even a few dozens of thou-
sands, whereas the number of observations is rarely higher than one hundred.
This high ratio of variables/cases requires new era computational tools to ex-
tract significant and meaningful rules from this kind of data. Existing deci-
sion tree learning algorithms can easily find a split which separates the training
data very well at a given level in the tree, but such a split can correspond to
noise only. This situation is more probable at intermediate and lower levels of
the tree.

A short example will illustrate this problem. Assuming that at a given level
of the tree there are 20 observations (10 from class A and 10 from class B)
and 2 × 105 features, the number of possible partitions of this training set (the
number of combinations of choosing 10 out of 20 instances) is smaller (the exact
number is 184, 756) than the number of available features. This makes it very
easy to find a split, i.e., an attribute and its corresponding threshold, which
can split this data perfectly. When there are only 10 observations in the node,
the number of combinations is only 250 whereas the number of attributes is 3
orders of magnitude higher. When there is only one univariate test that splits
the data, there is a very high risk of choosing faulty splits which correspond
to noise.

In this paper we tackle the problem of improving the performance of deci-
sion trees on gene expression data. Our focus is on univariate trees since they
are a ‘white-box’ technique and this fact makes them particularly interesting
for scientific modeling. They are much easier to understand than trees with
multivariate splits and much easier to learn from data. However traditional al-
gorithms, for example, C4.5 [23] or CART [4], fail to produce decision trees
with high classification accuracy on gene expression data. Our previous work
with various univariate decision tree algorithms showed that these algorithms
produce considerably small trees which classify the training data perfectly but
fail in classifying unseen instances [14]. Only a small number of attributes is used
in such trees and their model complexity is low (high bias) therefore they under-
fit the training data [20]. Producing bigger trees using standard algorithms such
as C4.5 does not solve the problem in the case of gene expression data because
small trees often classify the training data perfectly [14].

This indicates that the issue of split complexity could be advocated here since
not much can be gained from bigger univariate decision trees on this kind of data.
Standard techniques of improving the performance of classification algorithms,
e.g., ensemble methods when applied to decision trees result in complex clas-
sifiers that are almost impossible to understand by humans [8,24]. There are
also algorithms which apply multivariate tests [6] based mostly on a linear com-
bination of features. These kinds of decision trees with multivariate splits or
bagging/boosting methods often outperform existing univariate algorithms on
gene expression data [25,16]. They generate, however, more complex classifica-
tion rules that from the medical point of view are more difficult to understand
and analyze.



156 M. Czajkowski, M. Grześ, and M. Kretowski

Some feature selection should be taken into account especially in the context
of microarray data. Providing a group of genes that contributes most to the
classification task like in [1,10] may significantly improve the performance of
decision trees.

1.2 Related Work

One of the approaches that addresses the issue of the test complexity in decision
trees was explored by Berzal et al. [3] who proposed multi-way decision trees
using multi-way splits. In [3], a hierarchical clustering of attribute values is com-
bined with the standard greedy decision tree algorithm. The author reduces the
tree complexity (in terms of the number of nodes) by using multiple thresholds
in each split on a single numerical attribute. This will potentially increase the
branching factor of such splits, however such tests will be more expressive and
the overall number of nodes in the corresponding decision tree will be smaller.
In contrast to our solution, multi-way splits used in [3] are based on a single at-
tribute which is not sufficient to overcome the high ratio of features/observations
in the gene expression data.

The specific character of gene expression data and its influence on the process
of building decision trees was investigated by Li et al. [18]. This solution was
focused on using committees of trees to aggregate the discriminating power of
a bigger number of significant rules and make more reliable predictions. Firstly,
all features are ranked according to the gain ratio [23]. In the next step, the first
tree using the first top-ranked feature in the root node is built. Next, the second
tree using the second top-ranked feature in the root node is built and the process
continues until the k-th tree using the k-th top-ranked feature is obtained. The
classification of the final committee of k decision trees is governed by weighted
voting. It was observed that:

– well performing rules often contain features which are globally low-ranked;
– if the construction of a tree is confined to a set of globally top-ranked features,

the rules in the resulting tree may be less accurate than rules derived from
the entire feature space;

– alternative trees often outperform or compete with the performance of the
greedy tree.

This work also supports our approach to use many univariate splits in multi-
test decision tree induction algorithm. In particular, our aim is to make use of
features which are globally lower-ranked and use them jointly in multi-tests.
However, our aim is also to preserve simplicity of final decision trees, which is
not the case in [18].

The rest of the paper is organized as follows. In the next section, an algo-
rithm to learn multi-test decision trees is presented. In Section 3, the proposed
approach is experimentally evaluated on real gene expression data. The paper is
concluded in the last section and future work is also discussed.



MTDT for Gene Expression Data Analysis 157

2 Multi-Test Decision Trees

Regardless which approach to construct decision trees is used, one of the di-
mensions by which decision trees can be characterized is the number of features
which are tested at each node. Standard algorithms, such as C4.5 [23], use uni-
variate splits, which means that only one feature is checked in each internal node
of the tree. In this paper, we introduce a new type of decision trees that allow
testing more than one feature in a single internal node of the tree. Every split
of our trees is composed of a set of univariate tests and is called a multi-test
split. The fact that these elementary splits are univariate and the way they are
combined show that our approach is substantially different from multi-variate,
e.g. oblique, spits. Trees which are based on our approach are called Multi-Test
Decision Trees (MTDTs), because several univariate elementary tests can be
applied in every internal node of the tree. Every univariate test of the multi-test
corresponds basically to one split from classical algorithms such as C4.5, and our
extension is about combining such individual tests into more complex multi-test
splits. The reminder of this section introduces our algorithm for learning and
applying for classification such multi-test splits.

Decision trees can be constructed using different methods among which top-
down induction is the most common. In what follows, it is assumed that such
top-down induction is used, and the further description focuses on our novel idea
of multi-test splits, which could be essentially used with other types of decision
tree learning methods as well.

2.1 Learning Multi-Test Splits

Let M be a number of training instances X = {x1, x2, . . . , xM} in a given node.
Each instance is described by P attributes denoted as F = {f1, f2, . . . , fP }. Let
xi,j denote the value of the attribute j of the instance i. Each non-terminal node
contains a set of W multi-tests denoted as MT (MT = {mt1, mt2, . . . , mtW })
from which only one will be chosen in order to split the training instances into
two groups and create a branch for each outcome of the test. Each i-th multi-
test is composed of a group of no more than N univariate tests in which one is
called a primary splitter (PSi) and the rest N −1 surrogate splitters (Si,j where
1 ≤ j < N). The parameter denoted as N represents the maximum number of
one-dimensional tests that constitute the multi-test.

The MTDT splitting criterion is directed by the majority voting mechanism
where the result of each test constitutes a single vote. For this reason, surrogate
tests have considerable impact on decisions of multi-tests because they can out-
vote the primary splitters. It should be noted that this impact can be positive
as well as negative and effects the gain ratio for the entire multi-test. Addition-
ally, we create not one but W multi-tests that can compete with each other.
Therefore, the best multi-test that will be used as a splitting criterion may not
contain the test with highest gain ratio (PS1). This can happen when a com-
petitive multi-test mti (1 < i ≤ W ) has a higher gain ratio than mt1. The
illustration of finding the splitting rule for an internal node of the MTDT is
showed in Fig. 1.



158 M. Czajkowski, M. Grześ, and M. Kretowski

Fig. 1. An example of finding the best multi-test from the set of multi-tests for a
non-terminal node in MTDT

First, the algorithm searches for the best possible thresholds. This process is
similar to the search function in the C4.5 algorithm. Next, the W multi-tests are
calculated and the one with the highest gain ratio is chosen to split the training
instances. The algorithm that finds the splitting rule (the best multi-test) for a
given node of the MTDT during top-down induction is presented below.

Inputs:
M - number of training instances X={x1,x2,...,xM} in a node
P - number of attributes F={f1,f2,...,fP}
W - number of multi-tests

Initialize:
V - Vector of pairs: {threshold h, gain ratio gr}
MT - Empty vector MT={mt1,mt2,...,mtW}

Training:
FOR i in {1,...,P}

FOR j in {1,..,M-1}
h_(i,j) = 0.5*(x_(i,j) + x_(i,j+1))
IF IsCandidateThreshold(h_(i,j)) is True

gr = gain ratio of h_(i,j)
add pair {h_(i,j),gr} to V

ENDIF
ENDFOR

ENDFOR
Sort V decreasingly according to the highest gain ratio
MT[1] = BuildMultitest(V[1].h)
FOR i in {2,...,W}

h = FindCompetitive(V,MT)
MT[i] = BuildMultitest(h)



MTDT for Gene Expression Data Analysis 159

ENDFOR
FOR i in {1,...,W}

calculate gain ratio for MT[i]
ENDFOR

RETURN multi-test with the highest gain ratio from MT

Specific functions, such as IsCandidateThreshold, BuildMultitest and
FindCompetitive, are discussed in detail in subsequent sections.

IsCandidateThreshold. Function IsCandidateThreshold guides the search
process of the possible thresholds. At the beginning of the algorithm, we search
for a vector V that contains pairs of a threshold and a gain ratio that is calcu-
lated from the univariate test obtained from that threshold. If the attributes are
nominal, the set of possible values an attribute can take is limited and usually
small. Finding the potential set of tests for the continuous-valued attributes is
somewhat more difficult. In this case, one needs to calculate and rank all tests
that involve one feature only. Each single test compares the value of an attribute
fj (1 ≤ j ≤ P ) against a threshold hk,j : fj ≥ hk,j where hk,j denotes the value
of the k-threshold (1 ≤ k < M − 1) on the attribute j. To formulate the test,
we sort the training instances based on the values of an attribute fj in order to
obtain a finite set of values {x1,j , x2,j , . . . , xM,j}.

Any threshold hk,j between xi,j and xi+1,j (1 ≤ i < M) will have the same
effect when dividing the training instances, so we need to check only M − 1
possible thresholds for each numerical attribute fj . In Fig. 2, it can be observed
that some regular thresholds should not be considered, for example, h1,j , h4,j

and hM−1,j . Tests performed on those thresholds are useless for creating new
tests because they split two training instances from the same class. Therefore in
order to optimize the performance, we consider only the relevant threshold called
candidate threshold [11]. The proposed algorithm performs this optimization
using the IsCandidateThreshold function. All candidate thresholds are added
to the vector V and sorted according to the highest gain ratio. In our work,
the gain ratio criterion is used to determine the best possible threshold, and
the midpoint, hk,j , of the interval [xi,j , xi+1,j ] is applied as the value of this
threshold: hk,j = xi,j+xi+1,j

2 . It differs slightly from the implementation in the
C4.5 algorithm, where the threshold is set to the largest value of fj in the entire
training set that does not exceed the above interval midpoint.

BuildMultitest. Let us consider the first multi-test mt1. Let PS1 be a single
univariate test performed on a threshold from the input parameter of BuildMul-
titest function for mt1. In this particular case, the PS1 will have the highest gain
ratio in the node because it was built on the best possible threshold (V [1].h).
However we believe that applying a single test based on one attribute may cause
the classifier to underfit the learning data due to low complexity of such a clas-
sification rule. For this reason, the multi-test is composed of a group of N uni-
variate tests. The parameter denoted as N represents the maximum number of
one-dimensional tests that constitute the multi-test in each non-terminal node.



160 M. Czajkowski, M. Grześ, and M. Kretowski

Fig. 2. Candidate thresholds on attribute fj

Those tests will support the division of the training instances made by the pri-
mary splitter PS1. In other words, the remaining tests of the multi-test should,
using the remaining features, branch the tree in similar way to PS1.

In order to determine surrogate tests, we have adopted a solution proposed in
the CART system. The use of the surrogate variable at a given split results in a
similar node impurity measure. It also mimics the chosen split itself in terms of
which and how many observations goes to the corresponding branch. Therefore,
the measure of similarity between the primary splitter and remaining tests of
the multi-test is the number of observations classified in the same way. In our
method, we also consider tests that classify instances in a inverse (opposite) way
to PS1. For such tests, we reverse the relation between attribute and interval
midpoint, and recalculate the score. The primary splitter PS1 and up to N − 1
surrogate tests S1,l (1 ≤ l < N) constitute the single multi-test denoted as mt1.

FindCompetitive. Function searches for a threshold that will be applied in the
BuildMultitest function for mti where 1 < i ≤ W . This threshold will be used to
build an i primary splitter (PS) for the i multi-test. The process of obtaining the
first multi-test denoted as mt1, whose primary splitter PS1 has the highest gain
ratio, was shown in previous paragraph. Here we describe alternative multi-tests
that are also built in each non-terminal node and which compete with mt1. The
process of building multi-tests, mti (1 < i ≤ W ), requires finding new primary
splitters PSi which together with their surrogate tests may outperform mt1.

Two factors should be taken into consideration while choosing PSi. Firstly,
the primary splitters PSi should be competitor splitters to PS1. Competitor
splitters, alike surrogate splitters S1,i, yield high gain ratio but are not as good
as the primary splitter PS1. A significant difference between these splits is the
way variables are ranked. Surrogate splitters are not evaluated on how much
improvement they yield in reducing node impurity but rather on how closely
they mimic the split determined by the primary splitter. Competitor splits are
runners-up to the primary split and are ranked according to the highest gain
ratio. We denote splitters as competitor splitters if their gain ratio is higher
than q% of the best gain PS1 (the default value equal to 95%). Using more
competitor tests in the search process for the primary split (low q value) may
lead to the selection of tests with low gain ratio. However, decreasing the number



MTDT for Gene Expression Data Analysis 161

of competitor tests (high q) may cause the PSi be too similar to PS1. To sum up:
the surrogate splitters are similar to the primary splitter, whereas competitor
splitters are those which have highest gain ratio.

The second element that should be taken into consideration is that the same
variable is often listed as both a competitor and a surrogate. It may result
in obtaining alternative multi-tests, mti, that contain similar or identical uni-
variate tests and do not provide any improvement. Therefore competitor splits
should be diversified to make the alternative multi-tests also diversified. Function
FindCompetitive finds the primary splitter PSi in a loop for W −1 multi-tests.
Each PSi must be a competitor splitter to PS1 and be the worst average surro-
gate to all primary splitters PSj where j < i. The next step is to build multi-test
mti according to PSi in the same way as in Section 2.1.

2.2 Multi-Test Size and Prediction

The size of the multi-test has a critical impact on its performance and a splitting
decision. The parameter denoted as N represents the maximum number of uni-
variate tests in a multi-test and is defined by the user. To classify observations,
simple majority voting mechanism is employed in which each test has an equal
vote. In the case of a draw, the decision is made in accordance with the primary
splitter. In order to determine the final decision, the gain ratio for each of W
splits determined by multi-tests, mti (1 ≤ i ≤ W ), is calculated and compared.
The multi-test with the highest gain ratio is then applied in a given node.

The exact size of the multi-test depends on the difference between the primary
splitter and surrogate tests. The main idea of the MTDT is to use a group of
similar tests in a single node instead of one test as in the classical approach to
univariate decision trees. If there are tests that do not have a right substitute,
surrogate tests should not be added in order to avoid discrepancy in the multi-
test. An inappropriate set of surrogate tests may dominate the primary splitter
and deteriorate the splitting criterion. Therefore, surrogate tests added to the
multi-test should not be different from the primary splitter more than b percent.
When b = 0%, it means that no surrogates are accepted, which is equivalent to
setting N = 1. In this case, the decision tree would become similar to the tree
generated by the C4.5 algorithm as only one attribute will be used in each multi-
test. When b = 100%, it means that all N −1 surrogates join the multi-test. The
threshold, b, can be defined by the user (default value equal 10%).

3 Experimental Results

In this section the proposed solution is experimentally verified using real mi-
croarray datasets. The results of the MTDT algorithm were compared with
several popular decision tree systems.

3.1 Setup

The performance of the MTDT classifier was investigated using publicly avail-
able microarray datasets described in Table 1. These datasets are from the Kent



162 M. Czajkowski, M. Grześ, and M. Kretowski

Table 1. Kent Ridge Bio-medical gene expression datasets

Datasets Attributes Training Set Testing Set

Breast Cancer 24481 34/44 12/7
Central Nervous System 7129 21/39 -
Colon Tumor 6500 40/22 -
DLBCL Standford 4026 24/23 -
DLBCL vs Follicular Lymphoma 6817 58/19 -
DLBCL NIH 7399 88/72 30/50
Leukemia ALL vs AML 7129 27/11 20/14
Leukemia MLL vs ALL vs AML 12583 20/7/20 4/3/8
Prostate Cancer 12600 52/50 27/8

Ridge Bio-medical Dataset Repository [17] and are related to studies of hu-
man cancer, including: leukemia, colon tumor, breast and prostate cancer. For
datasets that were not pre-divided into the training and testing parts, the 10-
fold stratified cross-validation was applied1. Leave-one-out cross-validation was
also considered however no significant influence on classification accuracy was
observed. To ensure stable results, the average score of 10 runs is presented in
all experiments.

The classification process for all algorithms was preceded by feature selection
using the Relief-F [1] method which is common for microarray data analysis. In
the first step, Relief-F draws instances at random and computes their nearest
neighbors. Afterwards, Relief-F adjusts a feature weighting vector to give higher
weight to those attributes which discriminate the instance from neighbors of
different classes. The number of neighbors in Relief-F was equal to 10 and in
order to improve the computation time, the number of selected attributes was
arbitrary limited to the top 1000. Restriction for the number of attributes has no
significant influence on classification accuracy however it speeds the algorithms
up.

We have employed two alternative multi-tests mt2 and mt3 in addition to the
primary test, mt1, so the number of multi-tests analyzed in each non-terminal
node, was equal to 3 (W = 3). Performed experiments show that employing
a higher number of multi-tests, besides significant increase of the calculation
time, did not yield any improvement in classification accuracy. To prevent data
over-fitting, C4.5-like pessimistic pruning was applied.

3.2 Multi-Test Decision Tree Results

In Table 2, we compare the influence of the multi-test size on the accuracy.
Results show that the number of univariate tests N used in a single multi-test
has a significant impact on the classifier accuracy. The average score of the
1 Pre-divided datasets were also tested with cross-validation but since the obtained

performance was the same as with the original division into training and testing
parts, due to lack of space, we report results with that original division only.



MTDT for Gene Expression Data Analysis 163

Table 2. A comparison of the MTDT accuracy under different numbers of tests in
the multi-test

Dataset / Classifier MTDT N = 1 MTDT N = 5 MTDT N = 11

Breast Cancer 68.42 57.89 57.89
Central Nervous System 60.50 72.17 74.33
Colon Tumor 80.40 85.83 83.92
DLBCL Standford 81.75 85.25 86.60
DLBCL vs Follicular Lymphoma 84.82 83.42 85.42
DLBCL NIH 51.25 60.00 62.50
Leukemia ALL vs AML 91.17 91.17 88.23
Leukemia MLL vs ALL vs AML 86.67 100.00 100.00
Prostate Cancer 26.47 61.76 44.11

Average score 70.16 77.50 75.89

multi-test with N > 1 was higher on most of the datasets. On only one dataset
(Breast Cancer), the result of the multi-test algorithm was lower than expected,
although the overall improvement is noticeable. We conjecture that the main
cause of lower classification accuracy of the MTDT approach with N = 1 was
due to under-fitted decision trees. It is worth emphasizing that the MTDT with
a single one-attribute test in a node, N = 1, behaves similarly to the standard
C4.5 algorithm. It was also observed that using too many genes in the multi-test
may not only induce more complex rules but also over-fit learned trees to the
training data.

In order to detect and exclude the possibility of over-fitting in the training
phase of our method, we created artificial datasets which were copied from those
listed in Table 1 where attributes were left exactly the same but class labels were
randomly changed. This is usually referred to as the Y-randomization test [27].
The MTDT classification accuracy was significantly lower on randomized data
than on original data and therefore this indicates that there is no evidence of
over-fitting in our method.

Experiments performed on the Dual-Core CPU 1.66GHz machine with 2GB
of RAM showed that the proposed solution is scalable and can manage large
datasets. Average computation time on analysed datasets for increasing numbers
of tests in the multi-test: N = 1, N = 5, and N = 11 was 2.8, 5.3 and 8.8 seconds
correspondingly.

Leukemia MLL vs. ALL vs. AML Dataset. In one of our experiments,
the dataset from Armstrong [2] was evaluated. Dataset describes the distinction
between Leukemia MLL and other conventional ALL subtypes. There are a total
of 57 3-class training samples (20 for ALL, 17 for MLL, and 20 for AML) and 15
test samples (4, 3, and 8 correspondingly). MTDT decision trees with N = 1 and
N = 5 when evaluated on the training instances have the classification accuracy
equal 100%. The actual trees are illustrated in Fig. 3. Although decision trees
compared in this figure have the same performance on the training data, there
is a significant difference in results on the testing instances. Table 3 shows the



164 M. Czajkowski, M. Grześ, and M. Kretowski

Fig. 3. Multi-Test decision trees with N=1 and N=5 tests in a single node

Table 3. Multi-Test Decision Tree with N = 1 and N = 5

MTDT N = 1 MTDT N = 5

(a) (b) (c) (a) (b) (c) Classified as:

6 2 0 8 0 0 (a): AML
0 1 2 0 3 0 (b): MLL
0 2 2 0 0 4 (c): ALL

Accuracy 60% Accuracy 100%

confusion matrix for decision trees. In this experiment, decision trees with multi-
test size N = 1 and N = 5 have the same structure, number of nodes and the
same primary splitters. However, for other values of parameter N or different
datasets this may not be the case. Differences in the tree structure may occur
when alternative multi-tests outperform the mt1 test or surrogate splits outvote
the primary splitters. In spite of an equal tree size between MTDT with N = 1
and N > 1, a larger number of univariate tests in a multi-test generates more
complex nodes. Hopefully, the multi-tests contain only univariate tests which are
easy to understand by human experts. For most datasets shown in Table 1, there
is a relevant biological literature which identifies marker genes that are highly
correlated with the class distinction. In order to evaluate whether the MTDT
results are biologically meaningful, we checked if discovered genes from our model
match biological finding in the literature. The comparison showed that most of
the genes from our MTDT model were also identified in biological publications.
For this particular dataset, 4 out of 5 genes that built MTDT multi-test in the
root node were also distinguished in article [2] and patent [13]. Attributes that
built multi-tests in the lower parts of the MTDT tree usually do not appear
in biological publications as they distinguish only small sets of instances. We
believe that MTDT is capable of finding not only the most significant groups
of marker genes but also low-ranked genes that when combined may also be
meaningful.



MTDT for Gene Expression Data Analysis 165

Table 4. Comparison of classification accuracy

DT/CL AD BF J48 RF CT

Breast Cancer 42.10 47.36 52.63 68.42 68.42
Central Nervous System 63.33 71.66 56.66 75.00 73.33
Colon Tumor 74.19 75.80 85.48 75.80 75.80
DLBCL Standford 95.74 80.85 87.23 95.74 82.97
DLBCL vs Follicular Lymphoma 88.31 79.22 79.22 88.31 83.11
DLBCL NIH 50.00 60.00 57.50 52.50 62.50
Leukemia ALL vs AML 91.17 91.17 91.17 82.35 91.17
Leukemia MLL vs ALL vs AML * 73.33 80.00 86.66 73.33
Prostate Cancer 38.23 44.11 29.41 29.41 44.11

Average score 67.88 69.28 68.81 72.68 72.75

3.3 Comparison of MTDTs to Other Classifiers

The comparison of MTDTs to other decision trees was also performed. The
following classification algorithms were selected for this analysis:

1. AD Tree - alternating decision tree [12].
2. BF Tree - best-first decision tree classifier [22].
3. J48 Tree - pruned C4.5 decision tree [23].
4. Random Forest - algorithm constructing a forest of random trees [5].
5. Simple Cart - CART algorithm that implements minimal cost-complexity

pruning [4].

The implementation of standard algorithms in the Weka package [26] was used
in our evaluation. All classifiers, including the MTDT algorithm, were employed
with default values of parameters on all datasets. The results are presented in
Table 4. AD Tree can be applied only to binary class dataset therefore there are
no results for Leukemia MLL vs ALL vs AML dataset.

Results in Tables 2 and 4 show that MTDTs with N = 5 tests in a single node
yielded the best average accuracy, 77.50%, over all classification problems. How-
ever, the proposed MTDT method managed to achieve high accuracy whereas
comprehensive decision rules were maintained via univariate tests used in multi-
test splits. It is worth emphasizing that the MTDT with a single binary test in a
node, i.e., N = 1, performed similarly to all remaining ‘univariate test’ methods.
It can be compared to the J48 tree algorithm as they both use the gain ratio
criterion. Their trees in most cases separated the training data perfectly, but
performed considerably worse on testing instances. This may be caused by the
under-fitted decision tree model. A slight increase in the number of tests in each
split improved classification accuracy which can be observed in Table 2.

4 Conclusion and Future Directions

In this paper, we presented the multi-test decision tree approach to gene expres-
sion data classification. A new splitting criterion was introduced with the aim



166 M. Czajkowski, M. Grześ, and M. Kretowski

of reducing the under-fit of decision trees on these kind of data and improving
classification accuracy. The experimental sections showed that our method led to
competitive results as it outperformed the standard decision trees. Additionally,
proposed method can be used with incomplete or noisy datasets since it uses
internal surrogate tests. The preliminary comparison with the biological litera-
ture showed that decision trees learned by the MTDT algorithm have biological
interpretation. Therefore, biologists can benefit from using this ”white box” ap-
proach as it builds accurate and biologically meaningful models for classification.
In our future work, we are planning to apply MTDT to solve the problem of
missing values.

Even though, our results on the existing version of the algorithm and the
current parameter tuning are promising, additional work on the influence of the
test size, N , could yield an interesting insight into the behavior of our algorithm.
Overall, we observed that the size, N , of the multi-test has significant impact
on discovered rules and classification accuracy. We are working at the moment
on the algorithm that through internal cross-validation could set this parameter
automatically depending on training data. Another improvement concerns the
pre-pruning mechanism that will reduce the size of the multi-test in lower parts
of the tree. Our observations showed that the split subsets may have an incorrect
size which can then increase the tree height and lead to data over-fit. We are
planning also to look for adequate values of the percentage threshold b, which
measures the similarity between surrogate tests and the primary splitter. We
observed that replacing default settings with individually calculated values for
each dataset could also improve classification results.

Acknowledgments. We thank Wojciech Kwedlo for reading this paper and pro-
viding constructive feedback. This work was supported by the grant S/WI/2/08
from Bialystok University of Technology.

References

1. Aldamassi, M., Chen, Z., Merriman, B., Gussin, D., Nelson, S.: A Practical Guide
to Microarray Analysis of Gene Expression. UCLA Microarray Core & Nelson Lab,
UCLA Department of Human Genetics (2001)

2. Armstrong, S.A.: MLL Translocations Specify a Distinct Gene Expression Profile
that Distinguishes a Unique Leukemia. Nature Genetics 30, 41–47 (2002)

3. Berzal, F., Cubero, J.C., Maŕın, N., Sánchez, D.: Building multi-way decision trees
with numerical attributes. Information Sciences 165, 73–90 (2004)

4. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth Int. Group (1984)

5. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
6. Brodley, C.E., Utgoff, P.E.: Multivariate Decision Trees. Machine Learning 19,

45–77 (1995)
7. Chen, X., Wang, M., Zhang, H.: The use of classification trees for bioinformatics.

Wires Data Mining Knowl. Discov. 1, 55–63 (2011)
8. Dettling, M., Buhlmann, P.: Boosting for tumor classification with gene expression

data. Bioinformatics 19(9), 1061–1069 (2003)



MTDT for Gene Expression Data Analysis 167

9. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

10. Dramiski, M., Rada-Iglesias, A., Enroth, S., Wadelius, C., Koronacki, J., Ko-
morowski, J.: Monte Carlo feature selection for supervised classification. Bioin-
formatics 24(1), 110–117 (2008)

11. Fayyad, U.M., Irani, K.B.: On the Handling of Continuous-Valued Attributes in
Decision Tree Generation. Machine Learning 8, 87–102 (1992)

12. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Six-
teenth International Conference on Machine Learning, Bled, Slovenia, pp. 124–133
(1999)

13. Golub, T.R., Armstrong, S.A., Korsmeyer, S.J.: MLL translocations specify a
distinct gene expression profile, distinguishing a unique leukemia, United States
patent: 20060024734 (2006)

14. Grześ, M., Kretowski, M.: Decision Tree Approach to Microarray Data Analysis.
Biocybernetics and Biomedical Engineering 27(3), 29–42 (2007)

15. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning.
In: Data Mining, Inference and Prediction, 2nd edn. Springer, Heidelberg (2009)

16. Hu, H., Li, J., Wang, H., Shi, M.: A Maximally Diversified Multiple Decision Tree
Algorithm for Microarray Data Classification. In: I Workshop on Intelligent Sys-
tems for Bioinformatics, ACS (2006)

17. Kent Ridge Bio-medical Dataset Repository,
http://datam.i2r.a-star.edu.sg/datasets/index.html

18. Li, J., Liu, H., Ng, S., Wong, L.: Discovery of significant rules for classifying cancer
diagnosis data. Bioinformatics (19 suppl. 2), 93–102 (2003)

19. Murthy, S.: Automatic construction of decision trees from data: A multi-
disciplinary survey. Data Mining and Knowledge Discovery 2, 345–389 (1998)

20. Rokach, L., Maimon, O.Z.: Data mining with decision trees: theory and application.
Machine Perception Arfitical Intelligence 69 (2008)

21. Sebastiani, P., Gussoni, E., Kohane, I.S., Ramoni, M.F.: Statistical challenges in
functional genomics. Statistical Science 18(1), 33–70 (2003)

22. Shi, H.: Best-first decision tree learning, MSc dissertation, University of Waikato
(2007)

23. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
San Mateo (1993)

24. Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for
cancer classification. Applied Bioinformatics 2(3), 75–83 (2003)

25. Tan, P.J., Dowe, D.L., Dix, T.I.: Building classification models from microarray
data with tree-based classification algorithms. In: Orgun, M.A., Thornton, J. (eds.)
AI 2007. LNCS (LNAI), vol. 4830, pp. 589–598. Springer, Heidelberg (2007)

26. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

27. Wold, S., Eriksson, L.: Statistical Validation of QSAR Results. In: van de Water-
beemd, H. (ed.) Chemometrics Methods in Molecular Design, VCH, pp. 309–318
(1995)

28. Yeoh, E.J., Ross, M.E.: Classification, subtype discovery, and prediction of outcome
in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer
Cell 1(2), 133–143 (2002)

http://datam.i2r.a-star.edu.sg/datasets/index.html

	Multi-Test Decision Trees for Gene Expression Data Analysis

	Introduction
	Background and Motivation
	Related Work

	Multi-Test Decision Trees
	Learning Multi-Test Splits
	Multi-Test Size and Prediction

	Experimental Results
	Setup
	Multi-Test Decision Tree Results
	Comparison of MTDTs to Other Classifiers

	Conclusion and Future Directions
	References




