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Abstract: Most tree-based algorithms are typical top-down approaches that 
search only for locally optimal decisions at each node and does not guarantee 
the globally optimal solution. In this paper, we would like to propose a new 
evolutionary algorithm for global induction of univariate regression trees and 
model trees that associate leaves with simple linear regression models. The 
general structure of our solution follows a typical framework of evolutionary 
algorithms with an unstructured population and a generational selection. We 
propose specialised genetic operators to mutate and cross-over individuals 
(trees), fitness function that base on the Bayesian information criterion and 
smoothing process that improves the prediction accuracy of the model tree. 
Performed experiments on 15 real-life datasets show that proposed solution can 
be significantly less complex with at least comparable performance to the 
classical top-down counterparts. 
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1 Introduction 

The most common predictive tasks in data mining (Fayyad et al., 1996) are classification 
and regression and the decision trees (Murthy, 1998; Rokach and Maimon, 2008) are one 
of the most widely used prediction techniques. Regression and model trees are now 
popular alternatives to classical statistical techniques like standard regression or logistic 
regression (Hastie et al., 2009). They are easy to understand and interpret which makes 
them particularly useful when the aim of modelling is to understand the underlying 
processes of the environment. Decision trees are also applicable when the data does not 
satisfy rigorous assumptions required by more traditional methods (Hastie et al., 2009). 
We focus on univariate trees since they are a ‘white-box’ technique and it makes them 
particularly interesting for scientific modelling. It is easy to find explanation for 
predictions of univariate regression and model trees. 

1.1 Regression and model trees 

Regression and model trees may be considered as a variant of decision trees, designed to 
approximate real-valued functions instead of being used for classification tasks. Main 
difference between regression tree and model tree is that, for the latter, constant value in 
the terminal node is replaced by a regression plane. One of the first and most known 
regression tree solution was presented in the seminal book by Breiman et al. (1984) 
describing the CART system. CART finds a split that minimises the sum of squared 
residuals of the model when predicting and builds a piecewise constant model with each 
terminal node fitted by the training sample mean. The accuracy of prediction was later 
improved by replacing single values in the leaves by more advanced models. M5 
proposed by Quinlan (1992), induces a model tree that contains at leaves multivariate 
linear models analogous to piecewise linear functions. HTL presented by Torgo (1997) 
goes further and evaluate linear and non-linear models in terminal nodes. Model trees can 
also be applied to the classification problems (Kotsiantis, 2010). 

Figure 1 An example of univariate decision tree with tests on nominal and continuous-valued 
features 

 

Note: Depending on the tree type, leaves could contain class (classification tree), 
continuous value (regression tree) or some kind of model (model tree). 
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All aforementioned decision trees are built by a process that is known as recursive
partitioning. Top-down induction starts from the root node where locally optimal split
(test) is searched according to the given optimality measure. Then, the training data
is redirected to newly created nodes and this process is repeated for each node until
some stopping-rule is violated. Finally, the post-pruning is applied to improve the
generalisation power of the predictive model.

1.2 Motivation

Inducing the decision tree by a greedy strategy is fast and generally efficient in many
practical problems, but usually produces locally optimal solutions. It can be expected
that a more global induction could improve the tree structure and the model prediction.
Figure 2 illustrates two simple artificially generated datasets with analytically defined
decision borders.

Figure 2 Examples of artificial datasets, (a) split plane2 (b) armchair2

(a) (b)

The left dataset split plane2, discussed also in Vogel et al. (2007), can be perfectly
predictable with regression lines on subsets of the data resulting from a single partition.
The equation is:

y =

{
0 −4 ≤ x1 < −2
0.25x1 + 0.5 −2 ≤ x1 ≤ 2

(1)

Most of popular greedy top-down inducers that minimises the residual sum of squares
(RSS) like CART or standard deviation like M5 will not find the best partitions (CART
finds threshold at x1 = −0.44, M5 at x1 = −1.18). Not optimal partition in the root
node usually increases of the tree size and may result the higher prediction error.

Illustrated in Figure 2(b) function is defined as:

y =


x1 + 1 0 ≤ x1 ≤ 1

−x1 + 6 4 < x1 ≤ 5
−0.5x2 + 1.5 1 < x1 ≤ 4, 0 ≤ x2 ≤ 3
3x2 − 9 1 < x1 ≤ 4, 3 < x2 ≤ 5

(2)

It is a little more complex then split plane2 and many traditional approaches will fail
to efficiently split the data as the greedy inducers search only for a locally optimal
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solutions. Figure 3 presents the optimal model trees that can be generated by globally
induced and greedy top-down algorithms. These two simple artificial problems illustrate
general advantage of the global search solutions to greedy algorithms.

Figure 3 Examples of model trees for armchair2, (a) global approach (b) greedy approach

(a)

(b)

1.3 Related work

Multiple authors have proposed methods to limit negative effects of inducing the
decision tree with the greedy strategy. In the SECRET authors, Dobra and Gehrke (2002)
show that classification approach finds more globally optimal partitions than the CART
system. Different solution was proposed in SMOTI by Malerba et al. (2004) where
regression models exist not only in the leaves but also in the upper parts of the tree.
Authors suggest that this allows for individual predictors to have both global and local
effects on the model tree. A more recent innovation in order to find optimal splits in
nodes was presented in LLRT by Vogel et al. (2007). LLRT allows for a near-exhaustive
evaluation of all possible splits in a node, based on the quality of fit of linear regression
models in the resulting branches.

In the literature there are also some attempts of applying evolutionary approach for
induction of regression trees. In TARGET, Fan and Gray (2005) propose to evolve a
CART-like regression tree with simple genetic operators. Bayesian information criterion
(BIC) (Schwarz, 1978) is used as a fitness function which penalises the tree for
over-parametrisation. Experiments performed on two real datasets suggest that TARGET
outperforms in the terms of mean squared error the CART solution. Much more
advanced trees are presented in GPMCC where Potgieter and Engelbrecht (2008) make
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use of a genetic algorithm to evolve multivariate non-linear models at the leaves.
Authors managed to decrease the size of the trees comparing to commercial version of
M5 (Cubist) and neutral network called NeuroLinear (Setiono et al., 2002), however
their system was outperformed in terms of predictive accuracy.

Currently, there are no sufficient solutions with a good trade-off between predictive
performance and a model comprehensibility. Model trees with complex rules at the
leaves or ensemble methods generate accurate predictions but are difficult to interpret by
a human experts. On the other side, regression trees have lower predictive performance
but higher model comprehensibility. Finally, performed experiments suggest that
regression and model trees usually built overgrown trees and therefore are more difficult
to analyse and interpret.

In this paper, we would like to present an evolutionary algorithm for global induction
of regression and model trees. It fills the gap between simple regression trees and
advanced but less comprehensible model trees. Previously performed research showed
that global inducers are capable to efficiently evolve various types of classification
trees: univariate (Kretowski and Grześ, 2005), oblique (Kretowski and Grześ, 2006) and
mixed (Kretowski and Grześ, 2007). In our last paper, we applied a similar approach
to obtain accurate and compact regression trees (Kretowski and Czajkowski, 2010)
called GRT and we did preliminary experiments with the model trees (Czajkowski and
Kretowski, 2010) called GMT . Our work covers the induction of univariate regression
trees and model trees with simple linear models at the leaves. Proposed solution denoted
as GMT 2.0 improved our previous solutions in almost every step of evolutionary
algorithm. Starting with more heterogeneity population, additional genetic operators and
new fitness function, that extends the BIC. We also introduced the smoothing process
that could improve the prediction accuracy of the model tree.

2 Evolutionary induction of model trees

The GMT 2.0 general structure follows a typical framework of evolutionary algorithms
(Michalewicz, 1996) with an unstructured population and a generational selection.

2.1 Representation

Model trees are represented in their actual form as classical univariate trees with a
simple linear model at each leaf. Each test in a non-terminal node concerns only one
attribute (nominal or continuous valued). In a case of a continuous-valued feature typical
inequality tests are applied. As potential splits only precalculated candidate thresholds
(Fayyad and Irani, 1992) are considered. A candidate threshold for the given attribute
is defined as a midpoint between such a successive pair of examples in the sequence
sorted by the increasing value of the attribute, in which the examples are characterised
by different predicted values. Such a solution significantly limits the number of possible
splits and focuses the search process. For a nominal attribute at least one value is
associated with each branch. It means that an inner disjunction is built into the induction
algorithm.
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A simple linear model is calculated at each terminal node of the model tree using
standard regression technique (Press et al., 1988). A dependent variable y is modelled
as a linear function of single variable x:

Y = α+ β ∗ x, (3)

where x is one of the independent variables, α is the intercept and β is the slope of the
regression line that minimises the sum of squared residuals of the model.

In every node information about learning vectors associated with the node is
stored. This enables the algorithm to perform more efficiently local structure and tests
modifications during applications of genetic operators.

2.2 Initialisation

Initial individuals are created by applying the classical top-down algorithm, similar to
the CART and M5 approaches. At first, we learn a standard regression tree that has
mean of dependent variable values from training objects at each leaf. The recursive
partitioning is finished when all training objects in a node are characterised by the same
predicted value (or it varies only slightly, default: 1%) or the number of objects at
node is lower than the predefined value (default value: 5). Additionally, user can set the
maximum tree depth (default value: 10) to limit initial tree size. Next, a simple linear
model is calculated at each terminal node of the model tree.

Traditionally, the initial population should be generated randomly to cover the entire
range of possible solutions. Due to the large solution space the exhaustive search may
be infeasible. Therefore, while creating initial population we search for a good trade
off between a high degree of heterogeneity and relatively low computation time. We
propose several strategies:

• initial individuals are created by applying the classical top-down algorithm to
randomly chosen subsamples of the original training data (10% of data, but not more
than 500 examples)

• for each individual only tests based on the random subset
of attributes (default 50% of attributes) are applied

• at each individual for all non-terminal nodes one of the four test search strategies is
randomly chosen:

1 least squares (LS) function reduces node impurity measured by sum of squares
proposed in CART

2 least absolute deviation (LAD) function reduces the sum of absolute deviations.
It has greater resistance to the influence of outlying values to LS

3 mean absolute error (MAE) function which is more robust and also less
sensitive to outliers to LS

4 dipolar, where a dipol (a pair of feature vectors) is selected and then a test is
constructed which splits this dipole. First instance that constitutes dipol is
randomly selected from the node. Rest of the feature vectors are sorted
decreasingly according to the difference between dependent variable values to
the firstly chosen instance. To find a second instance that constitutes dipol we
applied mechanism similar to the ranking linear selection (Michalewicz, 1996).
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• one of three search strategies of predicted variable used in linear model at the leaves
is applied:

1 optimal: finds the locally optimal model that minimises the sum of squared
residuals. It is the most time-consuming search strategy as it must calculate
simple linear regression model for each attribute

2 random: finds the simple linear model from training objects in this leaf on the
randomly chosen independent variable

3 none: the fastest strategy. No attribute is used to build the simple linear model,
therefore each terminal node contains the sample mean.

Additionally, user can set the size of the population (default value: 50).

2.3 Genetic operators

To maintain genetic diversity, we have proposed two specialised genetic operators
corresponding to the classical mutation and cross-over. Each evolutionary iteration starts
with randomly choosing the operator type where default probability to select mutation
equal 0.8 and cross-over 0.2. Both operators have influence on the tree structure, tests in
non-terminal nodes and models at the leaves. After each operation it is usually necessary
to relocate learning vectors between parts of the tree rooted in the altered node. This
can cause that certain parts of the tree does not contain any learning vectors and has
to be pruned. Modifying a leaf makes sense only if it contains objects with different
dependent variable values.

2.3.1 Cross-over

Cross-over solution starts with selecting positions in two affected individuals. In each
of two trees one node is chosen randomly. We have proposed three variants of
recombination (Czajkowski and Kretowski, 2010):

• tests associated with the nodes are exchanged (only when non-terminal nodes are
chosen and the number of outcomes are equal)

• subtrees starting in the selected nodes are exchanged

• branches which start from the selected nodes are exchanged in random order (only
when non-terminal nodes are chosen and the number of outcomes are equal).

2.3.2 Mutation

Mutation solution starts with randomly choosing the type of node (equal probability to
select leaf or internal node). Next, the ranked list of nodes of the selected type is created
and a mechanism analogous to ranking linear selection is applied to decide which node
will be affected. Depending on the type of node, ranking take into account:

• Location (level) of the internal node in the tree – it is evident that modification of
the test in the root node affects whole tree and has a great impact, whereas mutation
of an internal node in lower parts of the tree has only a local impact. Therefore,
internal nodes in lower parts of the tree are mutated with higher probability.
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• Absolute error – worse in terms of prediction accuracy leaves and internal nodes are
mutated with higher probability (homogenous leaves are not included).

We have proposed new variants of mutation for internal node:

• node can be transformed (pruned) into a leaf

• tests between father and son exchanged

• mutation between subtrees that replaces all subtrees with randomly chosen one

• test in node reinitialised by new random or new dipolar one (described in
Section 2.2)

1 shifting the splitting threshold at continuous-valued feature

2 re-grouping nominal feature values by adding, merging branches or moving value
between them.

and for the leaf:

• transform leaf into an internal node with a new dipolar test

• replace simple linear model by a new one that is recalculated on a random predictor
variable

• remove predictor variable and leave mean value at the leaf.

2.4 Selection and termination condition

Ranking linear selection is applied as a selection mechanism. Additionally, in each
iteration, single individual with the highest value of fitness function in current
population in copied to the next one (elitist strategy).

Evolution terminates when the fitness of the best individual in the population does
not improve during the fixed number of generations (default value: 1,000). In case of
a slow convergence, maximum number of generations is also specified (default value:
5,000), which allows to limit the computation time.

2.5 Fitness function

Specification of a suitable fitness function is one of the most important and sensitive
element in the design of the evolutionary algorithm. It measures how good a single
individual is in terms of meeting the problem objective and drives the evolutionary
search process. Direct minimisation of the prediction error measured on the learning set
usually leads to the overfitting problem. In a typical top-down induction of decision
trees (Rokach and Maimon, 2008), this problem is partially mitigated by defining a
stopping condition and by applying a post-pruning (Esposito et al., 1997).

Fitness is computed for all members of the population after each generation. In our
previous work (Czajkowski and Kretowski, 2010), we used Akaike’s (1974) information
criterion (AIC) as a fitness function. This measure of the goodness of fit worked also as
a penalty for increasing the tree size. AIC is given by:

FitAIC(T ) = −2 ∗ ln(L(T )) + 2 ∗ k(T ), (4)
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where L(T ) is the maximum of the likelihood function of the tree T and k(T ) is the
number of model parameters in the tree. Log(likelihood) function L(T ) is typical for
regression models (Gagne and Dayton, 2002) and can be expressed as

ln(L(T )) = −0.5n ∗ [ln(2π) + ln(SSe(T )/n) + 1], (5)

where SSe(T ) is the sum of squared residuals of the tree T and n is the number of
observations. The term k(T ) can also be viewed as a penalty for over-parametrisation.
This complexity penalty term was set to Q(T ) + 1 in where Q(T ) is equal to the
number of terminal nodes in model tree T .

We tested also a measure introduced by Schwarz (1978) called BIC that seems to be
more appropriate for the regression and model trees. In this information criterion, which
is similar to AIC, the penalty for increasing model size depends on the n – number of
observations in the data:

FitBIC(T ) = −2 ∗ ln(L(T )) + ln(n) ∗ k(T ). (6)

However, performed research reveal that both information criteria in their base form
were not able to find an optimal structure of GMT 2.0. Measures worked sufficiently
good when the probability of mutation for leaves to transform into internal nodes was
very low or equal zero. Higher probability of transforming leaves into the internal nodes
caused rapid increase of size and error of the searched structure. However, not including
this mutation operator strongly limits variants of the evolution of the tree structure.

In this paper, we propose a new fitness function which extends the BIC. The number
of independent parameters in the complexity penalty term k(T ) for GMT 2.0 was set
to 2(Q(T ) +W (T )) where W (T ) is the number of attributes in the linear models at the
leaves (equal 1 for model node or 0 for regression node). High value of penalty term,
compared to our previous solution or the TARGET system allow GMT 2.0 to induce
significantly smaller trees.

Performed research in determining appropriate value of the penalty term k(T )
suggests that the modification of the number of model parameters in the tree is only a
partial solution. Higher value of k(T ) impact data with high and low value of likelihood
function in a different way and therefore it is not universal. Complexity penalty term has
the highest effect when the sum of squared residuals SSe(T ) of the tree is high because
of the logarithm function. Small value of fraction SSe(T )/n results in high value of
likelihood function which makes FitBIC(T ) less sensitive to the penalty term k(T ).
To obtain fitness function that is not sensitive to the various values of the likelihood
function, we multiplied the FitBIC(T ) by, as we call it, the tree size factor. This
is additional complexity penalty tries to balance the penalty for the small and large
datasets. The tree size factor is denoted as ϱ(T ) and can be expressed as:

ϱ(T ) =
n+Q(T )

n−Q(T )
. (7)

Therefore, the complete fitness function equation for GMT 2.0 is given by:

FitGMT 2.0(T ) =

{
FitBIC(T ) ∗ ϱ(T ) when FitBIC(T ) ≥ 0

FitBIC(T ) ∗ 1
ϱ(T ) when FitBIC(T ) < 0

. (8)
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The best single individuals are the ones with the lowest FitGMT 2.0(T ) value. The tree
size factor ϱ(T ) increases the value of the fitness function and depends on the number
of observation and leaves.

2.6 Smooting

In M5 algorithm, Quinlan (1992) proposed the smoothing process to improve the
prediction accuracy of the tree-based models. The smoothing process modify the
predicted by a model at the appropriate leaf, value of each case to reflect the predicted
values at nodes along the path from that leaf to the root. It requires to generate additional
linear models for every internal node of the tree. In the GMT 2.0 we developed the
form of smoothing that is similar to the one in M5 algorithm. At first, predicted value
for a test instance is computed by the leaf model. Then, this value is smoothed and
updated along the path back to the root by linear models for each nodes. Let P (Ti)
denote the predicted value at Ti subtree of tree T , then:

P (T ) =
ni ∗ P (Ti) + k ∗M(T )

ni + k
, (9)

where ni is the number of training cases at Ti, M(T ) is the predicted value recalculated
from the linear model at T and k is a smoothing constant (default 10).

Figure 4 illustrates the smoothing process for the test instances at the leaf with
linear model denoted as LM4. If there were no smoothing process, the predicted value
P (T ) for a tested instance would be equal the value calculated from the model LM4.
However, with the smoothing process turned on, the models that are on the path from
the leaf to the root (LM5 and LM6) have influence on the final predicted value P (T ).

According to Quinlan (1992) smoothing has most effect when some models were
constructed for few training cases or when the models along the path predict instances
very differently. However trees that adapt smoothing differs from the classical univariate
model trees. Each test instance is predicted not only by single model at proper leaf but
also by different linear models generated for every internal node up to the root node.
Therefore smoothing affects the simplicity of the solution making it more difficult to
understand and interpret.

Figure 4 The smoothing process for the test instances at the leaf with linear model denoted
as LM4
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3 Experimental validation

Two sets of experiments were performed – one for the regression trees and second
for the model trees. GMT 2.0 was validated on several real-life datasets. Obtained
results were compared with our previous solutions (Kretowski and Czajkowski, 2010;
Czajkowski and Kretowski, 2010) and popular regression and model trees that are
available in the Weka system (Hall et al., 2009).

3.1 Setup

To assess the performance of the proposed system in solving real-life problems, several
datasets from UCI machine learning repository (Blake et al., 1998) and provided by
Torgo (2010) were analysed. Table 1 presents the details of each dataset. All results
presented in this paper correspond to averages of 20 runs and were obtained by using
test sets (when available) or by 10-fold cross-validation. Root mean squared error
(RMSE) is given as the prediction error measure of the tested systems. The number
of nodes is given as a complexity measure (size) of regression and model trees. Each
tested algorithm runs with default values of parameters through all datasets.

Table 1 Characteristics of the real-life datasets

Dataset Number of features
Name Symbol Number of instances Numeric Nominal
Abalone AB 4,177 7 1
Ailerons AI 13,750 40 0
Auto-Mpg AM 392 4 3
Auto-Price AP 159 14 1
Delta Ailerons DA 7,129 5 0
Delta Elevators DE 9,517 6 0
Elevators EL 16,599 18 0
Housing HO 506 13 0
Kinemaics KI 8,192 8 0
Machine CPU MC 209 6 0
Pole PO 15,000 48 0
Pyrimidines PY 74 27 0
Stock ST 950 9 0
Triazines TR 186 60 0
Wisconsin Cancer WC 194 32 0

3.2 Regression trees

Regression trees are used for analysis that require simple predictions based on a
few logical if-then conditions. However, most solutions induce overgrown regression
trees which are difficult to analyse. Domain experts need solutions that are smaller
and therefore easier to understand. Our main goal in this set of experiments was to
decrease the tree size of our previous solution called GRT without significant increase
of prediction error. It is expected that changes in the complexity penalty term k(T )
influence not only the tree size but also the prediction error of GMT 2.0. For a
comparison purpose, we have tested four regression tree systems:
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• GMT 2.0reg – proposed solution, set to work as a regression tree.

• GRT – one of the predecessors of GMT 2.0. Globally induced regression tree
proposed in Kretowski and Czajkowski (2010).

• REPTree – popular top-down inducer. REPTree builds a regression tree using
variance and prunes it using reduced-error pruning (with backfitting).

• M5reg – state of art model tree proposed by Quinlan (1992), set to work as a
regression tree.

Table 2 Obtained results for the regression trees

Dataset GMT 2.0 GRT REPTree M5reg

RMSE Size RMSE Size RMSE Size RMSE Size
AB 2.33 3.5 2.31 51 2.35 201 2.28 36
AI 0.000213 19 0.000217 27 0.000203 553 0.000199 166
AM 3.96 2.1 3.57 45 3.6 94 3.49 19
AP 2542 2.0 2618 13 2760 32 2543 8.0
DA 0.000179 7.4 0.000179 82 0.000175 291 0.00176 74
DE 0.00150 7.9 0.00148 78 0.00150 319 0.00148 59
EL 0.00435 22 0.00443 32 0.00398 503 0.00413 189
HO 4.51 6.5 4.17 32 4.84 41 4.72 26
KI 0.194 25 0.194 34 0.191 819 0.182 264
MC 74.2 2.7 63.9 15 92.34 15 64.8 10
PO 9.91 19 10.32 25 8.25 223 9.32 139
PY 0.104 4.1 0.101 10 0.135 1.0 0.135 1.0
ST 1.41 13 1.33 39 1.19 137 1.14 88
TR 0.142 4.9 0.139 14 0.152 7.0 0.140 5.0
WC 33.3 1.9 39.2 16 35.9 9.0 35.0 3.0

Table 2 presents results for the regression trees. GMT 2.0 alike GRT managed to
induce significantly smaller trees compared to the tested counterparts. This can be
especially noticed on large datasets. Almost all GMT 2.0 trees are smaller and therefore
easier to analyse and interpret. The only exception appears in the Pyrimidines (PY)
dataset where globally induced trees are little more complex to the tested counterparts
however have significantly higher prediction accuracy. This suggests that greedy
algorithms like M5reg and REPTree underfitted to the training data and did not
capture the underlying structure.

The average prediction error of GMT 2.0 is similar to the GRT and REPTree
however it is slightly worse than M5reg. Comparing to our previous solution, GMT 2.0
managed to significantly decrease tree size in all datasets for over 70% (average). In the
same time, in 7 out of 15 datasets the prediction error RMSE for GMT 2.0 decreased,
compared to GRT or stayed on the same level. Lack of improvement on some datasets
may be explained by the significantly smaller trees induced by the GMT 2.0. There is
usually a trade-off between the predictive performance and the model comprehensibility.
Additional experiments showed that the GMT 2.0 with lower value of the parameter
k(T ) managed to induce larger but much more accurate regression trees. Modification
of this penalty term allows to fine tune the decision tree algorithm.
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3.3 Model trees

Model trees which are an extension of the regression trees, usually have higher
performance in the terms of the accuracy prediction. However, model trees like HTL
(Torgo, 1997) or SMOTI (Malerba et al., 2004) build complex models at the leaves that
reduces simplicity of the predictions. Therefore in this set of experiments we focus on
comparing the model trees with simple linear regression models at the leaves:

• GMT 2.0 – proposed solution with no smoothing.

• GMT – one of the predecessors of GMT 2.0. Globally induced model tree with
simple linear regression models at the leaves proposed in Czajkowski and
Kretowsk (2010).

• M5slr – state of art model tree system proposed by Quinlan (1992), set to work
with simple (instead of multivariate) linear regression model at the leaves.

We may observe from Table 3 that GMT 2.0 alike GMT managed to induce
significantly smaller trees to the tested counterparts. Research showed that the sizes of
induced GMT and GMT 2.0 trees are similar. However, in this set of experiment we
focus on improving of the GMT prediction power. We managed to reduce RMSE
error, comparing to our previous solution, in 14 out of 15 datasets for GMT 2.0.
Comparing to the M5slr, proposed solution managed to not only significantly decrease
tree size but also reduce the prediction error in most of the datasets.

Table 3 Comparison results for the model trees with simple linear regression models at the leaves

Dataset GMT 2.0 GMT M5slr

RMSE Size RMSE Size RMSE Size
AB 2.24 6.7 2.30 7.7 2.24 35
AI 0.000200 24 0.000207 18 0.000194 109
AM 3.23 4.7 3.43 9.9 3.35 11
AP 2328 2.9 2507 3.7 2183 6
DA 0.000173 13 0.000178 11 0.000170 46
DE 0.00147 8.6 0.00150 9 0,00148 40
EL 0.00397 40 0.00444 13 0.00386 174
HO 4.21 6.6 4.32 9.1 4.36 21
KI 0.183 34 0.196 20 0,178 196
MC 63.4 6.1 67.5 3.8 89.5 7.0
PO 9.37 67 12.41 12 10.28 108
PY 0.103 4.4 0.109 4.5 0.118 3.0
ST 1.22 18 1.63 7.1 1.08 64
TR 0.142 4.9 0.141 4.7 0.141 4.0
WC 32.7 1.0 34.3 3.1 33.8 1.0

3.4 Smoothed model trees

The smoothing process often improves the prediction accuracy of the tree-based models.
Table 4 illustrates the impact of the smoothing function on GMT 2.0 and M5slr
solutions. We may observe that both algorithms managed to slightly improve the
prediction accuracy on most of the datasets. Low impact of smoothing function and
weaker improvement of RMSE on proposed solution comparing to the M5slr smot
may result from smaller and more optimal GMT 2.0 tree structure that cannot be so
efficiently adjusted.
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Table 4 Comparison results for the smoothed model trees with simple linear regression models at
the leaves

Dataset GMT 2.0 smot M5slr smot
RMSE Size RMSE Size

AB 2.23 6.7 2.21 35
AI 0.000200 24 0.000186 109
AM 3.18 4.7 3.22 11
AP 2243 2.9 2282 6
DA 0.000172 14 0.000169 46
DE 0.00146 8.8 0.00147 40
EL 0.00393 39 0.00366 174
HO 4.07 6.9 4.07 21
KI 0.182 34 0.172 196
MC 62.6 5.8 87.6 7.0
PO 9.37 61 9.61 108
PY 0.093 4.3 0.115 3.0
ST 1.22 17 1.22 64
TR 0.132 5.0 0.137 4.0
WC 32.7 1.0 33.5 1.0

Table 4 results shows that smoothing process may have also a negative impact on
the final prediction. In stock and auto-price dataset, the RMSE calculated for the
M5slr smot has increased. None of this happen to GMT 2.0 smot.

3.5 Calculation time

As with most evolutionary algorithms, calculation time of the proposed approach is more
time consuming than the classical top-down inducers. Performed experiments with the
dual-core CPU 1.66 GHz with 2 GB RAM on the dataset Elevators (16,559 instances,
18 attributes) showed that time:

• for regression trees: M5reg equal 7 seconds, GMT 2.0 equal 1.5 minutes

• for model trees: M5slr equal 11 seconds, GMT 2.0 equal 33 minutes

• for smoothed model trees: no relevant time differences.

Difference between M5slr and GMT 2.0 is caused by the evolutionary evaluation of
linear models at the leaves. However, proposed solution is scalable and can manage
large datasets.

4 Conclusions

Regression trees and model trees with simple linear models at the leaves are important
‘white box’ solutions. In this paper, we propose a new global approach to the model tree
learning and compare it with classical top-down inducers. The structure of the GMT 2.0
tree, tests in non-terminal nodes and models at the leaves are searched in the same time
by specialised evolutionary algorithm.

Experimental results show that the globally evolved regression models are highly
competitive compared to the top-down-based counterparts, especially in the term of
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tree size. GMT 2.0 managed to significantly improve our previous solution: GRT
regression trees in the term of size and GMT in the predictive accuracy.

Proposed solution may be applied to the problems that are primarily concerned
with the regression of an outcome onto a single predictor. As an example the original
genetic epidemiology problem required only consideration of simple linear regression
models like (Shannon et al., 2002) to locate genes associated with a quantitative trait of
interests. GMT 2.0 is constantly improved. We plan to introduce oblique tests in the
non-terminal nodes and more advance models at the leaves. We also plan to parallelise
the evolutionary algorithm in order to speed-up its execution time.
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