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Abstract. This paper illustrates a parallel implementation of evolution-
ary induction of model trees. An objective is to demonstrate that such
evolutionary evolved trees, which are emerging alternatives to the greedy
top-down solutions, can be successfully applied to large scale data. The
proposed approach combines message passing (MPI) and shared mem-
ory (OpenMP) paradigms. This hybrid approach is based on a classical
master-slave model in which the individuals from the population are
evenly distributed to available nodes and cores. The most time consum-
ing operations like recalculation of the regression models in the leaves as
well as the fitness evaluation and genetic operators are executed in par-
allel on slaves. Experimental validation on artificial and real-life datasets
confirms the efficiency of the proposed implementation.
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1 Introduction

Decision trees are one of the most known prediction techniques in data mining [13].
Their popularity can be explained by their ease of application, fast operation and
effectiveness. Regression and model trees [12] may be considered as a variant of
decision trees, designed to approximate real-valued functions instead of being used
for classification tasks. Main difference between regression trees and model trees is
that, for the latter, constant value in the terminal nodes is replaced by the regres-
sion planes.

Despite fifty years of research on the decision trees, a few open issues still
remain [16]. To mitigate some of them (e.g. application of heuristics such as
greedy algorithms where locally optimal decisions are made in each tree node)
evolutionary algorithms (EAs) are applied to the decision tree induction [1]. The
strength of such approach lies in global search for splits and predictions, and it
results in higher accuracy and smaller output trees in comparison to popular top-
down decision tree inducers [19]. However, one of the major drawbacks associated
with the application of EAs is relatively high tree induction time, especially for
large scale data. In the recent survey [1] on the evolutionary induction of decision
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trees, authors put on the first place in the future trends the need of speeding up
the evolutionary induction.

Fortunately EAs are naturally prone to parallelism and the process of arti-
ficial evolution can be implemented in various ways [5]. There are three main
strategies that have been studied for the parallelization and/or distribution of
the computation effort in EAs:

— master-slave paradigm [3] - parallelization of the most time consuming oper-
ations in each evolutionary loop (usually fitness recalculation);

— cellular (fine-grained) algorithm [15] - redistribution of single individuals
which can communicate only with the nearest individuals (for the selection
and reproduction) based on the defined neighborhood topology:;

— island (coarse-grained) model [2] - grouping individuals into sub-populations
that are distributed between islands and can evolve independently.

In this paper, a parallelization with a hybrid MPI+OpenMP approach (which
is considered as providing better efficiency than e.g. pure MPI version [20]) is
proposed to the evolutionary induction of regression and model trees. It is applied
to a system called Global Model Tree (GMT) [6] that is used in many real-life
applications [7]. The main objectives of this work are to accelerate the GMT
system and to enable efficient evolutionary induction of decision trees on large
scale data. Previously, we managed to apply similar idea for parallelizing the
evolutionary induction of classification trees [8]. To the best of our knowledge,
proposed solution is the first research on parallelization the evolutionary induc-
tion of regression or model trees, as there have been no such attempts in the
literature.

This paper is organized as follows. The next section provides a brief back-
ground on the GMT system. Section 3 describes our approach for parallel imple-
mentation of evolutionary tree induction in detail. Section 4 presents experimen-
tal validation of the proposed solution on artificial and real-life datasets. In the
last section, the paper is concluded and possible future works are sketched.

2 Global Model Tree System

The general structure of the GMT system follows a typical EA [17] framework
with an unstructured population and a generational selection. Model trees are
represented in their actual form as univariate trees, so each split in the inter-
nal node is based on a single attribute. If the attribute is nominal, at least one
value is associated with each branch (inner disjunction). In case of a continuous-
valued attribute, the typical inequality tests are applied. Initial individuals are
constructed using greedy strategies [19] on random subsamples of the train-
ing data, and the tests in internal nodes are searched on random subsets of
attributes. Each tree leaf contains a multivariate linear regression model that is
constructed using the standard regression technique [18] with objects associated
with that node. A dependent variable (y) is explained by the linear combination
of multiple independent variables {x1,z2,...,24}:

y=0Bo+br*x1+ Baxxa+ ...+ By xxq, (1)
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Fig. 1. Crossover between two individuals and the resulting offspring. Each individual
has one donor node and one receiver node.

where ¢ is the number of independent variables and §; (0 < i < g) are fixed coeffi-
cients that minimize the sum of the squared residuals of the model. Additionally,
in every node information about training instances associated with the node is
stored. This enables the algorithm to perform more efficiently local structure
and tests modifications during applications of genetic operators.

Tree-based representation requires developing specialized genetic operators
corresponding to classical mutation and crossover. Application of the operators
can modify the tree structure, tests in internal nodes, and models in the leaves.
The mutation operator makes random changes in some places of the selected
individuals. The crossover operator attempts to combine elements of two existing
individuals (parents) to create a new solution. The GMT system performs various
specialized variants of genetic operators. An example of asymmetric crossover
where the subtree of the first /second individual is replaced by a new one that was
duplicated from the second/first individual is illustrated in Fig. 1. The replaced
subtree starts in the node denoted as a receiver, and the duplicated subtree starts
in the node denoted as a donor. It is preferred that the receiver node has a high
error per instance and it is replaced by the donor node, which should have a
small value of error as it is duplicated. The application of this particular variant
is more likely to improve affected individuals because, with higher probability,
the good nodes are duplicated and replace the weak nodes. Several variants of
crossover and mutations were proposed in [6], e.g.:
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— finding a new test or modification of the existing one (shift threshold on
continuous attribute, re-grouping nominal attribute values) in the internal
node;

— pruning the internal node and transforming it into the leaf with a new mul-
tivariate linear regression model;

— expanding the leaf into the internal node;

— replacing one of the following: subtree, branch, node, or test between two
affected individuals;

— modification of the linear regression models in the leaves (add, remove, or
change attributes).

Successful application of any operator results in a necessity for relocation of the
instances between tree parts rooted in the modified nodes.

The selection mechanism is based on the ranking linear selection [17] with
the elitist strategy, which copies the best individual founded so far to the next
population. The fitness function measures the performance of the individuals
in terms of meeting the problem objective. In the context of decision trees,
a direct minimization of the prediction performance measured on the learning
set often leads to the over-fitting problem and poor performance on unseen
testing instances. Therefore, efficient fitness function should consider not only
the predictive error but also the complexity of the tree. In GMT, the authors
adapt the Bayesian Information Criterion (BIC) [21] as a fitness function. The
BIC fitness is equal to:

Fitgro(T) = =2 % In(L(T)) + In(n) * k(T), (2)

where L(T) is the tree (T') maximum of likelihood function, k(T") is the complex-
ity term, and n equals the number of instances. The function L(T) is common
for regression models [9] and is defined as:

In(L(T)) = —0.5n * [In(27) + In(SS.(T)/n) + 1]. (3)

The term SS.(T) is the sum of squared residuals of the tree T' (on the training
set).

3 Parallel Implementation of the GMT System

The proposed parallelization of the model tree evolutionary inducer is based on
the sequential GMT algorithm for univariate model trees. The general flowchart
of our hybrid MPI4+OpenMP approach is illustrated in Fig. 2. One can observe
that the evolutionary induction is run in a sequential way on a master node and
the most time consuming operations (evaluation of the individuals, recalculation
of the regression models and genetic operators) are performed in parallel on
the available nodes (slaves). This master-slave parallelization approach, where
the master distributes the population among the slaves and, finally, it gathers
and merges the results, does not affect the results of the induction. Information
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Fig. 2. Hybrid parallel approach of the evolutionary model tree induction

about the location of the training instances is stored in each node of model trees.
This way the genetic operators can efficiently obtain the fitness corresponding
to the individual [6]. The actual fitness calculation is embedded into the post
mutation and crossover processing, when the instances in the affected parts of the
tree (or trees) are relocated. This mechanism increases the memory complexity
of the induction but significantly reduces its computational complexity. As a
consequence, the most time consuming elements of the algorithm are genetic
operators and thus are performed in parallel. In addition, each tree node contains
information about the regression models. After each successive application of any
genetic operator the regression models in the affected leaves are recalculated,
which also takes considerable amount of time.

The first level of parallelization the GMT solution (see Fig.2) applies dis-
tributed memory approach where the master node spreads individuals from the
population over slave nodes using message-passing strategy [10]. The role of the
master node is to perform selection and reproduction (steps (1) and (7)) as
well as the verification of termination condition (step (8)). In each evolutionary
loop, the master evenly distributes individuals among the slaves (step (2)). To
avoid wasting resources, the chunk of population is left on the master which also
works as a slave. Migration the individuals between nodes (steps (2) and (6)) is
performed with the framework of the message-passing interface (MPI [11]) and
requires: packing the tree structures into a flat message; transferring the message
between nodes (sending/receiving); and unpacking the message into the corre-
sponding tree. The packed tree structure contains information about its size and
the information about each tree node:

node type (leaf or internal node);

— type and definition of a test (only for internal node);

definition of the multivariate linear regression model;

— additional statistics (number of instances that reaches the node, prediction
€error).
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To avoid unnecessary unpacking-packing operations (for the trees that will not be
selected into the next generation) on the master, the fitness value of the migrated
individual is also transferred. However, no information about the objects redis-
tribution in the tree is included in the package. Including such information would
strongly increase the size of the package, especially on large scale datasets. There-
fore, alike in our previously presented research [8], we recover the redistribution
of the instances in those nodes that will be affected by the genetic operators.
It is performed on slave nodes which execute the mutation and crossover opera-
tions (steps (3) and (4)). If the genetic operator is successful, then there is also
a need to reallocate the instances in the sub-trees and rebuild regression models
in the leaves (step (5)). Otherwise, the nodes statistics from the received pack-
age remain unchanged. It should be emphasis that the GMT system mutates
the internal nodes in lower parts of the tree with higher probability. This may
enhance a possible speedup of such partial nodes reconstruction as it is expected
that the lower parts of the tree held fewer instances that need to be reallocated.

Second level of parallelization that applies shared (OpenMP [4]) memory
approach is performed on slave nodes. All the calculations assigned to the slave
node are spread over cores which run the algorithm blocks in parallel. Depend-
ing on the genetic operator type, each core processes a single individual at a
time (in case of mutation) or pairs of affected individuals (in case of crossover)
in parallel. All cores within the node operate independently but share the same
memory resources. In contrast to the distributed memory approach, no data com-
munication between the cores is required as the access and modification of the
same memory space by one core is visible to all other cores. However, additional
synchronization during write/read operations is needed in order to insure appro-
priate access to shared memory. Parallelization with shared memory approach
is also applied on the master node for the distribution and gathering popula-
tion from other nodes. In addition, those individuals that were transformed into
leaves after the application of genetic operators are extended into stumps in
parallel by cores at each slave node.

4 Experiments

In this section we show the performance of the proposed parallel version of the
GMT system. Two sets of experiments were performed on real-life and artificial
datasets using evolutionary induced regression and model trees.

4.1 Setup

All presented results were obtained with a default setting of parameters from the
sequential version of the GMT system. We have tested one artificially generated
dataset called Armchair [6] with 4 different number of instances (from 1 000
to 1 000 000) and 4 real-life datasets available in the UCI Machine Learning
Repository [14]. In addition, we have compared the time performance between
regression and model tree inductions, and provide some detailed time-sharing
information of our MPI+OpenMP parallelization.
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In the paper we focus only on the time performance of the GMT system,
therefore, results for the prediction accuracy are not enclosed. However, for all
tested datasets, the proposed hybrid approach achieved very good results - the
same as the sequential version [6].

Experiments were performed on a cluster of sixteen SMP servers (nodes) run-
ning Ubuntu 12 and connected by an Infiniband network (20 Gb/s). Each server
was equipped with 16 GB RAM, 2xXeon X5355 2.66 GHz CPUs with total num-
ber of cores equal 8. We used the Intel version 15.1 compiler, MVAPICH version
2.2 and OpenMP version 3.0. Within each node, the shared memory approach
(OpenMP) was applied whereas between the nodes the message-passing inter-
face (MPI) was used. For performance measuring we made use of the Multi-
Processing Environment (MPE) library with the graphical visualization tool
Jumpshot-4 [11].

4.2 Results

In the first experiment, the authors focus on the overall speedup of the proposed
hybrid MPI+OpenMP approach. Table1 presents the obtained mean speedup
for different datasets. Only the best combination of nodes and cores is shown
and it looked as follows for all tested datasets:

— results for 2 cores: 1 node with 2 OpenMP threads;

— results for 4 cores: 4 nodes with 1 OpenMP thread;

— results for 8, 16, 32, 64 cores: 8 nodes with 1, 2, 4, 8 OpenMP threads per
node, respectively.

It should be recalled that the shared memory approach is strongly linked and
limited by the available hardware (e.g. 8 cores in one node), whereas within
the distributed memory approach it is usually easier to create more numerous
configurations.

Results enclosed in Table1 show that the proposed hybrid parallelization
noticeable decreases the tree induction time on artificial and real-life datasets.

Table 1. Mean speedup reported for different number of cores

Dataset |Instances | Attributes | Speedup on different number of cores
2 4 8 16 |32 64

Armchair| 1 000 2 1.913.64|6.25|9.81|14.24 | 20.11
Armchagr| 10 000 2 1.853.3816.19|9.98 | 14.99 | 22.81
Armchair| 100 000 2 1.8513.40|6.04|9.97 | 14.74 | 20.85
Armchair| 1 000 000 | 2 1.7213.31]5.62|9.08|13.52 | 17.52
Stock 950 9 1.4713.2113.92|8.08|11.86 | 19.49
Pol 15 000 48 1.7413.235.47|9.06 | 14.95 | 18.33
Fried 40 768 10 1.80 1 2.81|5.09|8.54 | 13.63 | 23.08

Elnino 178 080 9 1.8012.82|5.79|7.82|11.82|15.80
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The speedup for 64 cores is in range from x15.8 on the Elnino dataset to x23.1
on the Fried dataset. With such speedup, the average tree induction time for
GMT on the Elnino dataset (the biggest dataset from [6]) decreased from over
10h to 40 min. The smaller speedup on the largest datasets (Armchair with 1
million instances and Elnino) may be caused by the necessity of reallocating
large number of instances (after unpacking the message) in the affected node on
the slaves. However, the algorithm speedup is still higher than for the evolution-
ary induced classification trees where the maximum speedup did not exceed x15
[8] on artificially generated datasets. We can observe that the speedup differences
between 32 and 64 cores are relatively small considering doubling the number of
cores. The possible reason is the size of the population (default: 64 individuals).
To achieve effective parallelization, the total number of cores should not exceed
half of the population size because for some operations like crossover, each core
performs calculations on two individuals.

64 T T T 40000 T T T
1000 obj., mode| —+— build linear model KXxX=
10000 obj., model —>— calculate model error
30 | 100000 obj., mode| —a— i 35000 e genetic operators
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Fig. 3. Performance evaluation: (a) speedup comparison between model and regression
(regr) tree induction on the Armchair dataset with different number of objects, (b)
detailed time-sharing information of model tree induction (without OpenMP) with
different number of slaves. Evaluation performed on the Armchair dataset with 100 000
instances.

Figure 3(a) illustrates the performance of the regression and model tree
induction on the Armchair dataset with various number of instances. We can
observe that with the increase of the number of cores the disproportion between
the speedup for both types of tree representations is getting higher (around 2x
smaller speedup for 64 cores in favor of model trees). To better understand why
the proposed approach performs differently on regression and model trees see
Fig. 3(b) which illustrates in details the time-sharing information for the induc-
tion of the model trees. In case of the model tree induction, more than 60 % of
the evolutionary loop time is spent on building the linear models in the leaves
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and calculating their errors. We can observe, that this part of the algorithm is
well scalable (over 95 %), however, it only exists for the evolutionary induced
model trees as the regression trees does not have linear models in the leaves.
Other parallelized parts like genetic operators (which include embedded fitness
recalculations) are also well scalable (around 95 %), however, due to the overhead
(MPT transfer) the speedup improvement on larger number of cores is smaller.
For 8 processes the MPI takes almost 30 % of the evolutionary loop time in
case of the model trees and approximately 50 % for the regression trees. In addi-
tion, as some parts of the algorithm have to run sequentially, the efficiency for
the higher number of cores is getting smaller, as expected from the Amdahl’s
law [10].

5 Conclusion and Future Works

The growing popularity of the evolutionary induced model trees can be with-
held if there will be no sufficient solutions to improve their speed and their
ability to analyze large scale data. In the paper, the authors propose a hybrid
MPI+OpenMP parallelization to extend the GMT system. Proposed implemen-
tation takes an advantage of modern parallel machines and may provide an effi-
cient acceleration on high-performance computing clusters as well as on low-cost
commodity hardware. We see many promising directions for the future research.
One of the possibilities is an additional parallelization of the models calculations
in the leaves (with OpenMP) as well as to deal with a GPGPU parallelization.
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