
Decision Support Systems 74 (2015) 57–66

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r .com/ locate /dss
Cost-sensitive Global Model Trees applied to loan charge-off forecasting
Marcin Czajkowski a,⁎, Monika Czerwonka b, Marek Kretowski a

a Faculty of Computer Science, Bialystok University of Technology, Wiejska 45a, 15-351 Bialystok, Poland
b Collegium of Management and Finance, Warsaw School of Economics, Al. Niepodleglosci 162, 02-554 Warsaw, Poland
⁎ Corresponding author.
E-mail address: m.czajkowski@pb.edu.pl (M. Czajkow

http://dx.doi.org/10.1016/j.dss.2015.03.009
0167-9236/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 17 April 2014
Received in revised form 10 February 2015
Accepted 30 March 2015
Available online 9 April 2015

Keywords:
Cost-sensitive regression
Model trees
Evolutionary algorithms
Asymmetric costs
Loan charge-off forecasting
Regression learning methods in real world applications often require cost minimization instead of the reduction
of various metrics of prediction errors. Currently in the literature, there is a lack of white box solutions that can
deal with forecasting problemswhere under-prediction and over-prediction errors have different consequences.
To fill this gap, we introduced the Cost-sensitive Global Model Tree (CGMT), which applies a fitness function that
minimizes an average misprediction cost. Proposed specialized genetic operators improve searching for optimal
tree structure and cost-sensitive linear regression models in the leaves. Experimental validation is performed
on loan charge-off data. It is known to be a difficult forecasting problem for banks due to the asymmetric cost
structure. Obtained results show that specialized evolutionary algorithm applied to model tree induction finds
significantly more accurate predictions than tested competitors. Decisions generated by the CGMT are simple,
easy to interpret, and can be applied directly.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A lot of real world problems are cost-sensitive, which means that
different types of prediction errors are not equally costly [5]. As a result,
typicalminimization of prediction errors is not the best scenario. A cost-
sensitive term encompasses all types of learning where cost is consid-
ered [50,19], and different types of costs (e.g., costs of attributes, cost
of instances, and costs of errors) can be distinguished. The current
research focuses on a single cost for decisionmaking, however,multiple
costs are also investigated [35].

For example, in medical diagnoses, there are several types of
costs that can be minimized, such as the cost of misclassification
(e.g., overlooking an ill patient can be fatal in contrast to a false positive
test) or the cost of treatment (e.g., financial or risk). When speculating
on stock exchange, investors directly compare future gains and losses
and usually givemoreweight to losses. Researchers show that potential
gains need to be approximately twice as large to offset potential losses
[51]. As a consequence, investors tend to realize their gains more
often than their losses as they sell winning stocks more readily. There
are many other examples for such asymmetry, such as in bankruptcy
prediction [57], behavioral finances [45], expected stock returns [2],
criminal justice settings [6], physician prognostic behavior [1], product
recommendations [32], and so on.

Cost-sensitive regression is still not adequately addressed in the
data mining literature, as most existing research in this area deals
with classification problems. Conventional algorithms usually operate
ski).
with symmetric loss functions and minimize absolute or squared errors
that do not distinguish differences between under-prediction and over-
prediction, as each is weighted equally (the cost of under-prediction
and over-prediction is equal). There is a need for solutions with
asymmetric loss functions that can successfully forecast cost-sensitive
regression problems. Such models also minimize absolute or squared
errors, however, the under-predicted and over-predicted instances
have different weights that depend on the costs.

Our study makes several important contributions to the literature.
First, we propose a new method called the Cost-sensitive Global
Model Tree (CGMT), which extends the cost-neutral solution called
GMT [17]. By applying evolutionary algorithms (EA) in the model tree
induction, wemanaged to successfully search for optimal tree structure
and cost-sensitive regression models in the leaves under different
asymmetric loss functions. What is more, CGMT predictions on loan
charge-off forecasting data as one of the cost-sensitive problems faced
by banks are significantly more accurate than the results of their tested
counterparts.

Next, the hierarchical tree structure, in which appropriate tests from
consecutive nodes are sequentially applied, closely resembles a human
way of decision making. Therefore, the CGMT prediction model is
natural and easy to understand and interpret, which is extremely
important in financial forecasting. Finally, we propose an improvement
of existing algorithms in terms of their performance. In solutions
proposed in [5] and [56], the linear tuning function is calculated by
the heuristic approach (hill climbing algorithm). We managed to find
a directminimization that returns the exact value of an adjusted regres-
sion model. The proposed approach significantly extends upon previ-
ously performed research on cost-sensitive extensions for GMT [16]. In
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particular, proposed solution can work with any convex function. New
specialized variants of genetic operators were proposed, the fitness
function was improved and mode detailed experimental analysis was
performed.

The rest of the paper is organized as follows. The next section
presents background information and Section 3 proposes the CGMT
approach. The experimental evaluation is performed in Section 4 and
the paper is concluded in the last section, in which future work is also
discussed.

2. Background

In this section, we want to present some background information
about decision trees for regression and asymmetric loss function as
well as the problem of loan charge-off forecasting.

2.1. Regression and model trees

The most common predictive tasks in data mining are classification
and regression, and the decision tree [42] is one of the most frequently
applied prediction techniques. Tree-based approaches are easy to
understand, visualize, and interpret. Their similarity to the human
reasoning process makes them a powerful tool [29] among data
analysts.

The problem of learning the optimal model tree is known to be
NP-complete [39]. Consequently, practical decision-tree inducers are
based on heuristics such as the greedy approach, where locally optimal
decisions are made in each node. This process is known as recursive
partitioning [41]. Two main variants of decision trees can be distin-
guished by the type of problem they are applied to. Tree predictors
can be used to classify existing data (classification trees) or to
approximate real-valued functions (regression trees). In each leaf, the
classification tree assigns a class label (usually a majority class of all
Fig. 1. An example of top-down induction of c
instances that reach that particular leaf), while the regression tree
holds a constant value (usually an average value for the target attri-
bute). The model tree can be seen as an extension of the regression
tree. The most important difference is that the constant value in each
leaf of the regression tree is replaced in the model tree by the linear
(or nonlinear) regression function. An example of classification, regres-
sion, andmodel tree induced by the top-down greedy approach is illus-
trated in Fig. 1. The color of each region in the classification tree
represents a different class. In regression and model trees, the height
of each region corresponds to the value of the prediction function.

One of the first and probably the most well-known top-down
regression tree solutions is the CART system [7]. The algorithm searches
for a locally optimal split that minimizes the sum of squared residuals
and builds a piecewise constant model with each terminal node fitted
with the training sample mean. Other solutions have managed to
improve the prediction accuracy by replacing single values in the leaves
with more advanced models. The M5 system [52] induces a tree that
containsmultiple linearmodels in the leaves, and thus the tree is similar
to a piecewise linear function. All these solutions are fast and generally
efficient in many practical problems, but they usually produce locally
optimal solutions.

To limit the negative effects of greedy induction, multiple authors
have proposed various techniques [36,54]. However, the true global
approach for decision tree induction was possible with evolutionary
computation. In the literature, there are attempts to apply the evolu-
tionary approach for the induction of decision trees [4], but only a few
solutions concern the regression problem. In TARGET [20], the authors
propose to evolve a CART-like regression tree with simple operators
and the Bayesian Information Criterion (BIC) [43] as a fitness function.
Evolutionary induced regression trees with linear models in the leaves
were proposed in a solution called E-Motion [3]. The authors applied a
standard 1-point crossover and two different mutation strategies
(shrinking and expanding). The algorithm optimizes the tree error
lassification, regression, and model tree.
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(RMSE, MAE) and size (number of leaves) using a weight formula
or lexicographic analysis as a fitness function. A more complex solution
called GMT is proposed in [15,17], where specialized EA is used to
induce model trees as well as the linear regression models in the
leaves.

Most of the systems that perform global searches in the field of
candidate solutions compete successfullywith popular greedymethods.
Evolutionary induced trees are usually smaller and have higher
prediction accuracy [4]. The price for better and more accurate
predictions is the slow induction time of decision trees, but this can be
partially mitigated by parallel implementations or combining EA with
memetic algorithms [11,14].

Although, the forecasting performance of regression andmodel trees
may be slightly lower than more complex solutions like random forests
or neural networks, the explanation ability of the model trees and the
transparency of predictions are significantly higher.

2.2. Asymmetric loss function

The loss function is a part of every forecasting model. Let dependent
variable y be predicted based on a vector of independent variables (X),
and let f(X) be a function of the regressors minimizing a particular loss
function L(y, f(X)). Typical examples of loss functions are the squared
error, such as used in least squares methods:

L y; f Xð Þð Þ ¼ y− f Xð Þð Þ2 ð1Þ

and the absolute error:

L y; f Xð Þð Þ ¼jy− f Xð Þj: ð2Þ

Both loss functions are symmetric in that for every y and k, the
L(y + k, f(X)) = L(y − k, f(X)). Symmetric loss functions dominate in
statistics and data mining. The Nobel Laureate Clive Granger stated
that the obvious problem with the choice of the right loss function is
that it is a symmetric function, whereas actual loss functions are often
asymmetric [24].

The pioneer in the field of asymmetric costs in predictionwas Varian
[53], who proposed the LinEx loss function. This loss function, which
was approximately exponential on one side and linear on the other,
became a popular alternative to least squares procedures. It was later
extended to the asymmetric linear quadratic loss functions [10]
presented in Fig. 2.

However, in machine learning, there are not many propositions of
algorithms that handle asymmetric costs. In the most recent survey of
Fig. 2. An example of LinLin and QuadQuad cost functions.
cost-sensitive decision tree induction algorithms [34], the regression
or model trees were not mentioned, and only the problem of classifica-
tionwas discussed. In the induction of cost-sensitive classification trees,
three techniques are popular:

• Transforming the traditional decision tree into a cost-sensitive one.
This requires incorporating costs into splitting criteria and pruning
[8];

• Post hoc tuning (e.g., MetaCost [18] or cost instance weighting [47]).
Both methods are universal and transform traditional algorithms
into cost-sensitive;

• Using the evolutionary approach for cost-sensitive decision tree
induction [30].

The vast majority of data mining algorithms are applied only to
classification problems [48], while cost-sensitive regression is not really
studied outside the field of statistics [5]. There are, however, few papers
in the literature that deal with regression (e.g., in [12], the authors
propose a modified back-propagation neural network (NN) that applies
the LinLin cost function). As for the regression andmodel trees, there are
two different techniques: the application of EAs formodel trees [16] and
post hoc tuning [5,56]. There also exist other regression solutions, but
they are focused on different types of costs, such as feature evaluation
costs [23] and rare extreme values [49].

Post hoc tuning methods [5] for regression are similar to the ones in
cost-sensitive classification. The solution proposed by Bansal et al. [5]
minimizes average misprediction cost post hoc by adjusting the final
prediction by a certain value. The algorithm is tested for traditional
regression methods under an asymmetric cost structure. This system
was later extended [56] and introduced polynomial functions as a
model adjustment. This way, the algorithm couldworkwith any convex
cost function, such as LinLin and QuadQuad.

The first cost-sensitive extensions for the global induction of model
trees were introduced in [16]. Authors have successfully extended the
evolutionary algorithm for model tree induction with an asymmetric
LinLin loss function that minimizes the average misprediction cost.
Two variants of mutation operators that search for cost-sensitive linear
regression models in the leaves were proposed. The first operator
adjusted the regression model by a certain amount, like in the post
hoc tuningmethod [5]. The secondoperator calculated a new regression
model based on a subset of instances in the node.
2.3. Loan charge-off forecasting

Loan loss reserves are determined by banks based on their predic-
tions of future loan charge-off amounts. This data is characterized by
asymmetric costs on misprediction errors because the under-prediction
of loan charge-off is more costly than over-prediction. This problem
was also evaluated in the papers [5,56,16].

Let's assume that the bank needs to predict the future loan charge-
off (y) using a vector of independent variables (X). If the regression
model in the bank over-predicts its future loan charge-off (f(X) N y),
theworst that could happen is a reduction in the bank's income because
extra funds will remain in the loan loss reserves and in some cases, it
will also result in a lower credit score from financial analysts. Under-
prediction (f(X) b y) means that the bank did not prepare sufficient
provisions for its loan losses and does not have enough reserves. It
causes regulatory problems and a significant downturn of its credit
rating, which is much more dangerous to the bank.

As it was pointed out in [5], it is important to penalize under-
predictions more heavily than over-predictions by discouraging banks
from having less than adequate amounts as reserves. This requires
using asymmetric loss functions in prediction models like LinLin and
QuadQuad.
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3. Cost-sensitive Global Model Tree

In this section, we present how to induce the cost-sensitive model
tree with the evolutionary approach. At first, we briefly describe a
solution called Global Model Tree (GMT) [17]. Next, we illustrate how
to efficiently convert this cost-neutral model tree inducer into the
cost-sensitive one and propose our solution, the Cost-sensitive Global
Model Tree (CGMT). We also refer to the solutions proposed in [16,5,
56] and show how they can be improved.

3.1. Global Model Tree schema

Evolutionary algorithms [37] belong to a family of meta-heuristic
methods. They represent techniques for solving a wide variety of
difficult optimization problems. GMT follows a traditional framework
of EA inspired by biological mechanisms of evolution. The algorithm
(see Fig. 3) operates on individuals that compose a current population.
Each individual represents a candidate solution to the target problem.
Individuals are assessed using a fitness function that measures their
performance. Next, individuals with higher fitness usually have a higher
probability of being selected for reproduction. Genetic operators such as
mutation and crossover influence individuals, thereby producing new
offspring. This guided random search (offspring usually inherits some
traits from its ancestors) is stopped when some convergence criteria is
satisfied.

Model trees are represented in their actual form as traditional
univariate trees, so each split in the internal node is based on a single
attribute. If the attribute is nominal, at least one value is associated
with each branch (inner disjunction). In case of a continuous-valued
attribute, the typical inequality tests are applied. To predict instances
associated with each leaf, a multivariate linear regression model [40]
is constructed. Initial individuals are induced using greedy strategies
on a random subsample of the training data, and the tests in internal
nodes are searched on a random subset of attributes. Each tree leaf con-
tains a multiple linear regression model using the standard regression
technique [40] that is constructed with instances associated with that
leaf. A dependent variable (y) is explained by the linear combination
of multiple independent variables X = {x1, x2, …, xm}:

y ¼ β0 þ β1 � x1 þ β2 � x2 þ…þ βq � xq; ð3Þ
Fig. 3. The GMT process diagram.
where q is the number of independent variables and β0 … q are fixed
coefficients that minimize the sum of the squared residuals of the
model.

Tree-based representation requires developing specialized genetic
operators corresponding to classical mutation and crossover. Applica-
tion of the operators can modify the tree structure, tests in internal
nodes, and models in the leaves. The crossover operator attempts to
combine elements of two existing individuals (parents) to create a
new solution. An example of crossover where two individuals exchange
all subtrees is illustrated in Fig. 4. Themutation operatormakes random
changes in some places of selected individuals. Several variants of cross-
over and mutations were proposed [13,15,17]:

• Modify the test in internal nodes (shift threshold, replace tested
attribute);

• Prune the internal node and transform it into the leaf with a new
multivariate linear regression model;

• Expand the leaf into the internal node;
• Replace one of the following: subtree, branch, node, or test between
two affected individuals;

• Modify linear regressionmodels in the leaves (add, remove, or change
attributes).

The selection mechanism is based on the ranking linear selection
[37] with the elitist strategy, which copies the best individual founded
so far to the next population.

Selection acts as a force that increases the quality of the population.
For this reason, themechanism of selection usually requires a quantita-
tive measure to assess individuals in the population. Such an objective
function is called a fitness function and in practice, it is a very important
and sensitive element of the evolutionary system. It drives the evolu-
tionary search process by measuring how good a single individual is in
terms of meeting the problem objective. In the context of decision
trees, a direct minimization of the prediction performance measured
on the learning set leads to the over-fitting problem and poor perfor-
mance on unseen testing instances. Therefore, there is a need to balance
the predictive error and the complexity of the tree. In GMT, the authors
adapt the Bayesian Information Criterion (BIC) [43] as a fitness function.
The BIC fitness is equal to:

FitBIC Tð Þ ¼ −2 � ln L Tð Þð Þ þ ln nð Þ � k Tð Þ; ð4Þ

where L(T) is the tree T maximum of likelihood function, k(T) is the
complexity term, and n equals the number of instances. The function
L(T) is common for regression models [21] and equals:

ln L Tð Þð Þ ¼ −0:5n � ln 2πð Þ þ ln SSe Tð Þ=nð Þ þ 1½ �: ð5Þ

The term SSe(T) is the sum of squared residuals of the tree T (on the
training set).

3.2. Cost-sensitive transformation

There are a few steps to transform the regularmodel tree into a cost-
sensitive one. First, the authors adapt the average misprediction cost
(AMC) [5] as a measurement for assessing the performance of the
proposed method. Consider a dependent variable, y, that is predicted
based on a vector of independent variables x. The regression method
learns the prediction model, f : x → y from the training data S =
{b xi, yi N |i = 1, 2,…, N}. AMC can be defined as:

AMC ¼ 1
N

XN
1

C f xið Þ−yið Þ; ð6Þ

where C(e) is a function that characterizes the cost and e is a prediction
error. AMC measurements can be viewed as a more general version of



Fig. 4. Crossover between two individuals and their resulting offspring.
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the mean absolute error (MAE). When the costs for under-prediction
and over-prediction are equal, the loss function is symmetric (Eq. (2))
and AMC = MAE.

In CGMT, we adapted the cost-sensitive BIC-like fitness function
proposed in [16]. The authors replaced SSe(T) from Eq. (5) with AMC
from Eq. (6). This way, the fitness function will measure how good a
single individual is in terms of meeting the cost-sensitive problem
objective. The complexity term, k(T), works as a penalty for over-
parameterization of the tree T. The penalty term:

k Tð Þ ¼ 2 � Q Tð Þ þM Tð Þð Þ; ð7Þ

where Q(T) is the number of internal nodes and M(T) is the number of
attributes that build models in the leaves. In this paper, we updated
the parameter k(T) in comparison to [16]. Performed experiments
showed that this higher value of complexity term works better with
CGMT because it reduces the tree size and improves the generalizability.

With the all cost-sensitive transformations proposed in this paper,
the final form of the fitness function for CGMT is as follows:

FitCGMT Tð Þ ¼ n ln 2πð Þ þ ln AMC Tð Þ=nð Þ þ 1½ � þ 2ln nð Þ
� Q Tð Þ þM Tð Þð Þ; ð8Þ

where in the first element of equation depends on the tree average
misprediction cost measured on the learning set and the second part
reflects the tree complexity.

To allow CGMT to work with any convex cost function (e.g., LinLin,
QuadQuad, LinEx, and SquarEx) we had to develop a universal way to
search for cost-sensitive models in the leaves of the tree. We proposed
an adjustment of regression models and different variants of mutation
operator together with modified fitness function, thereby efficiently
converting cost-neutral model trees into cost-sensitive ones.
3.2.1. Model adjustment for any convex cost function
One of the ways to modify the regression model in the leaf into a

cost-sensitive one is to shift it toward a smaller AMC error. We will
denote the desired shift as θ. This strategy works well in the post hoc
tuning methods proposed in [5] and later in [56]. To find regression
model adjustment, the authors used a heuristic approach such as the
hill climbing algorithm. A similar idea was proposed in [16], where
each regression model was shifted by a certain amount using EA.

For convex cost functions like QuadQuad, LinEx, and SquarEx, θ
cannot be calculated directly and needs to be approximated. In CGMT,
we simply checked between which two instances the AMC error was
minimized. Next, the algorithm selects θ randomly as long as two
instances are on the different sides of the regression line (one instance
should be under-predicted and the other should be over-predicted).
After calculating the adjustment, the new regression model in the leaf
is equal to:

f new xð Þ ¼ f xð Þ þ θ; ð9Þ

where θ is the shift. Fig. 5 shows an example of actual f0(x) and the
shifted regression model f1(x).

In CGMT, the adjustment of the regression model in the leaf is
applied after any modifications of the regression model. Changes in
regression models can be caused either by mutation or crossover
operators.

3.2.2. Model adjustment for LinLin
Finding adjustment θ with EA is time consuming as besides

searching for the optimal tree structure, splits in internal nodes, and
regression models in the leaves, EA also looks for the value that each
model should be shifted. However, in case of LinLin cost function, the
adjustment θ can be calculated directly.
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Fig. 5. An example of the linear regression model f0(x) shifted by θ: f1(x) and the new, randomly changed model: f2(x).
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Let x− denote under-predicted instances and x+ denote over-
predicted instances by an actual regression model in the leaf. The cost
of under-prediction and over-prediction equals C− and C+, respectively.
If the AMC+ denotes the average misprediction cost of over-predicted
instances (x+) and AMC− the under-predicted ones (x−), then:

AMC ¼ AMCþ þ AMC−
: ð10Þ

In LinLin loss function, whichminimizes the absolute error (Eq. (2)),
the problem of searching for θ is reduced to finding appropriate
regression quantile that will split instances according to their costs and
cardinality [28]. In our case, we know the weights given to positive
(over-predicted) andnegative (under-predicted) instances. Tominimize
Eq. (10), we need to have equal weight differences between over-
predicted and under-predicted instances; therefore, we need to solve:

Nþ � Cþ−N− � C− ¼ 0; ð11Þ

where N+ and N− denote the number of over-predicted and under-
predicted instances in the adjusted model, respectively. Considering
thatN++N−=N, we can estimate the number of instances that should
be over-predicted and under-predicted:

N̂þ ¼ n � C−

C− þ Cþ N̂− ¼ n � Cþ

C− þ Cþ : ð12Þ

The final step is to calculate model adjustment, which equals:

θ ¼ yk− f xkð Þ; ð13Þ

where k is the N+-th instance in order starting from the most under-
predicted instances to the most over-predicted. The instance k can also
be calculated as the N−-th one in order, sorted from the most over-
predicted instances to the most under-predicted, as this would return

the same instance. However, the estimated value N̂þ from Eq. (12) does
not have to be an integer; therefore, we have to consider two variants:

• If N̂
þ
is an integer, then Nþ ¼ N̂

þ
,

• If N̂
xþ

is not an integer, then: Nþ ¼
floor N̂

þ� �
if C− N Cþ

ceil N̂
þ� �

if C− b Cþ :

8<
:

With knowledge of the exact value of over-predicted and under-
predicted instances in the adjusted model, we can calculate the shift
from Eq. (13). It can be observed that when Nþ ¼ N̂
þ
, the θ has the

same value in the range b yk − f(xk), yk + 1 − f(xk + 1) N.

3.2.3. Random model changes
Shifting regressionmodels in the leaves tomake them cost-sensitive

is one of the options. Another one is to modify the coefficients in linear
regression models and leave the search for the optimal one to the EA.
We randomly selected a single coefficient and modified it (increased
or decreased it) by a random percent from 0 % to 100 %. Next, we
adjusted the regression model with the above-mentioned algorithm.
Such a technique, together with a mutation variant that added,
removed, or changed the attributes in themodels in the leaves, allowed
us to find completely new and cost-sensitive regression models. It can
also work with any convex cost function like LinLin, QuadQuad, LinEx,
SquarEx, etc. Fig. 5 illustrates actual f0(x) and the new, randomly
modified regression model denoted as f2(x).

3.3. Discussion of the improvements

In the paper, we have extended the GMT solution [17] to work as a
cost-sensitive learner. The original GMT is cost-neutral algorithm with
symmetric loss function and therefore, couldn't be applied to the data
with different prediction costs. To transform GMT to the cost-sensitive
learner, the new fitness function that involve costs of the under-
predictions and over-prediction was defined. Next, new variants of
mutations were proposed that improve the search of the cost-sensitive
regression models in the leaves. Modifications of the initialization the
individuals in the population was also performed as only the long
dipolar strategy [16] was applied to search for the splits in the internal
nodes. Experimental results presented in the next section show that
there is a huge gap between GMT and CGMT when cost-sensitive data
is analyzed.

In the literature, there is also an attempt to transform GMT to
the cost-sensitive learner denoted as GMTCS [16]. There are, however,
significant differences between proposed CGMT solution and the
GMTCS. In particular:

• An evolutionary search of the regression model adjustments for the
LinLin cost function in GMTCS was replaced by the analytical formula.
This increased the convergence of evolutionary algorithms and signif-
icantly improved the prediction accuracy of the regression models;

• Newmutation operators that perform random changes in the regres-
sion models in the leaves were introduced. This allowed CGMT to
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explore a larger solution space and fit more accurate cost-sensitive
linear regression models into the instances in the leaves;

• The previous GMTCS algorithm works only with the LinLin cost
function. The CGMT solution works with any convex cost functions
like LinLin, QuadQuad, LinEx, SquarEx, etc.;

• The fitness function of the CGMT was improved to increase the
algorithm's generalization ability;

• More detailed experimental analysis of loan charge-off predictions
was performed, and LinLin and QuadQuad loss functions were investi-
gated. Presented results in the next section show that CGMTmanaged
to significantly outperform (P value b 0.0001) in terms of error reduc-
tion the GMTCS solution.

4. Experiments

In this section, we present an experimental validation of the
proposed approach called CGMT and its competitors on a loan charge-
off forecasting problem.

4.1. Datasets

The proposed solution is applied to a loan charge-off forecasting
problem that is characterized by asymmetric costs, as over-prediction
is less costly than under-prediction. We focus on financial institutions
in the USA from 2004 to 2010 and use the data fromWharton Research
Data Services [55]. The average number of banks analyzed in this study
was 7, 695— from 6, 992 to 8, 315. In each quarter of the year, the banks
needed to forecast the amount of loan charge-off.

In the experiments, we preprocessed the data in the same way as
other authors that have dealt with this forecasting problem [5,56,16].
The instances with missing values were removed and the natural
logarithm transformation was performed on the dependent variable to
reduce the extent of skewness.

Each quarter of the year was predicted separately with 14 attributes
related to the current financial information of the bank. To predict the
loan charge-off in the following quarter, the attributes presented in
Table 1
The variable codes, names, and definitions from WRDS used in the experimental evaluation.
[55]

No. Code Name Definition

1 RCFD1400 Total loans and leases, gross The aggregate gro
2 RCFD1403 Total loans and lease finance receivables:

nonaccrual
Includes: the outs
lease financing re

3 RCFD1407 Total loans and lease financing receivables: past due
90 days or more and still accruing

Includes: all restru
due and unpaid fo

4 RCFD2143 Intangible assets Includes the unam
5 RCFD2170 Total assets The sum of all ass
6 RCFD3163 Goodwill Includes the amou
7 RCFD3200 Subordinated notes and debentures Includes the amou

convertible debt).
8 RCFD3210 Equity capital, total The sum of “Perpe

Profits and Capita
Unrealized Loss o

9 RIAD4010 Interest and fee income on loans, total Includes the total
loans in condition

10 RIAD4079 Total noninterest income Includes the sum
Domestic Offices”
Foreign Transactio
“Service Charges o

11 RIAD4180 Expense of federal funds purchased and securities
sold under agreements to repurchase

Includes the gross
Under Agreement

12 RIAD4340 Net income (loss) Includes the “Net
13 RCFDA223 Risk-weighted assets (net of allowances and other

deductions)
The amount of the

14 RIAD4635 Charge-offs on allowance for loan and lease losses The amount of gro
Table 1 were used. From the table, we can observe that one of the
independent variables is the loan charge-off of the previous quarter.
One can also notice that no e.g., macroeconomic variables and unem-
ployment information were used. These attributes could have had
an impact on the amount of charge-off loans, however, to compare
CGMT with previous research, we used the same set of independent
variables.

From 28 quarters, 27 datasets were generated, as for the newest
quarter the predicted charge-off value for I 2011 was not accessible in
WRDS. Each algorithm was trained on a single (training) quarter and
then tested on the following (testing) quarter. In this way, 26 indepen-
dent training and testing sets were used in the experiments.
4.2. Setup

We followed the experimental validation performed in [56]. Thanks
to Prof. Huimin Zhao, who provided us with the source code of his
tuningmethods denoted as BSZ [5] and Linear [56], wewere able to con-
front the prediction performance of all tested algorithms. We attached
the averagemisprediction cost (AMC) for three base regressionmodels:
standard least-squares linear regression (LR), the M5 model tree [52],
and the back-propagation neural network (NN) [44], which were also
tested in [5,56,16].

In all reported experiments, the algorithms ran with their default
settings. Algorithms LR,M5, and NNwere tested using theWeka system
[25]. The settings of CGMT were as recommended in GMT [17]: the
population size was 50, the probability of the mutation single node
was 0.8, and the probability of the crossover between two individuals
was 0.2.

We also presented the results of the cost-neutral GMT algorithm and
proposed the CGMT solution. Tests were performed for two different
cost functions; LinLin and QuadQuad, and different cost rations (CR)
for under-prediction to over-prediction were as follows: 10:1, 20:1,
50:1, and100:1. For the resultswith LinLin cost function,we also included
the GMTCS results [16] (the algorithm does not work with the QuadQuad
loss function). Table 2 illustrates an overview of the performed experi-
ments, algorithms, and tested settings.
ss book value of total loans together with valuation reserves.
tanding balances of loans; lease financing receivables status; all restructured loans;
ceivables (all with nonaccrual status).
ctured loans and leases; loans and lease financing receivables on which payment is
r 90 days or more.
ortized amount of intangible assets.
et items.
nt (book value) of unamortized goodwill.
nt of outstanding subordinated notes and debentures (including mandatory

tual Preferred Stock and Related Surplus”, “Common Stock”, “Surplus”, “Undivided
l Reserves”, “Cumulative Foreign Currency Translation Adjustments” less “Net
n Marketable Equity Securities”.
of interest and fee income and similar charges levied against all assets classified as
reports, including fees on overdrafts.
of “Income from Fiduciary Activities”, “Service Charges on Deposit Accounts in
, “Trading Gains (Losses) and Fees from Foreign Exchange Transactions”, “Other
n Gains (Losses)”, “Gains (Losses) and Fees from Assets Held in Trading Accounts”,
n Deposit Accounts” and “Other Noninterest Income”.
expense of all liabilities included in “Federal Funds Purchased and Securities Sold
s to Repurchase”.
Income (Loss)” for the period.
bank's risk-weighted assets net of all deductions.

ss charge-offs on loans and leases during the calendar year-to-date.



Table 2
An overview of GMT experimental validation.

Algorithms Cost Settings

Original Tuned BSZ Tuned Linear Ratio Function

LR LRBSZ LRLinear 10 LinLin
M5 M5BSZ M5Linear 20 QuadQuad
NN NNBSZ NNLinear 50
GMT GMTBSZ GMTLinear 100
GMTCS – –

CGMT CGMTBSZ CGMTLinear
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4.3. Comparison results

Table 3 summarizes the AMC results for CGMT, three state-of-the-art
regression solutions, and the cost-neutralmodel tree denoted asGMT. In
Table 3 we also show the impact of two post hoc cost-sensitive tuning
methods: BSZ [5] and Linear [56]. In the experiments, four cost ratio
(CR) and twodifferent loss functions (LinLin andQuadQuad) are applied.
We report an average value that algorithms achieved on 26 indepen-
dent testing sets. In case of CGMT, the AMC result equals an average
value of 20 runs; therefore, the standard deviation is included.

From the results in Table 3, we see a huge difference between cost-
neutral and cost-sensitive algorithms. Post hoc tuning methods signifi-
cantly reduce AMC, and the Linear variant is almost always better than
BSZ. We can observe that the best performance of CGMT competitors
is achieved by GMTLinear and NNLinear. The poor performance of the M5
model tree is a result of over-fitting and the biases of the linear models
in the leaves for outliers in the analyzed datasets. It is especially visible
when the QuadQuad loss function is applied. An additional study ofM5
performance showed that errors on a few under-predicted instances
was responsible for such poor results (on one of the instances, the
AMC was near 1, 000, 000, which equals under-prediction of the loan
charge-off for QuadQuad loss function with Cost ratio = 100). When
those outliers were eliminated, M5 managed to obtain slightly better
results than LR. In Table 3, we can see that the post hoc tuning of
Table 3
Average misprediction cost (AMC) for CGMT, GMT, and three popular regression
algorithms with and without post hoc tuning.

Algorithm CR LinLin loss function QuadQuad loss function

No tuning BSZ Linear No tuning BSZ Linear

LR 10:1 7.41 3.78 3.81 22.39 12.64 11.80
M5 10:1 7.29 4.16 3.88 139.03 129.60 97.21
NN 10:1 8.16 3.69 3.57 23.74 11.11 10.43
GMT 10:1 7.07 3.81 3.65 19.93 10.99 9.91
CGMT 10:1 2.98 2.98 2.98 8.75 8.77 8.74
± (stdev) – 0.16 0.16 0.16 1.30 1.31 1.30
LR 20:1 14.06 4.84 4.42 42.59 17.94 15.73
M5 20:1 13.78 5.47 4.86 162.22 137.21 94.43
NN 20:1 15.60 4.62 4.26 45.37 15.11 13.56
GMT 20:1 13.66 5.07 4.27 39.91 14.66 13.13
CGMT 20:1 3.43 3.43 3.43 10.54 10.53 10.54
± (stdev) – 0.19 0.19 0.19 2.33 2.33 2.33
LR 50:1 34.02 6.24 5.23 103.19 28.40 22.64
M5 50:1 33.23 6.03 6.44 231.73 154.80 97.72
NN 50:1 37.92 5.69 5.09 110.34 22.09 18.62
GMT 50:1 32.96 6.40 6.11 95.86 22.93 19.93
CGMT 50:1 4.02 4.02 4.02 13.27 13.22 13.27
± (stdev) – 0.25 0.25 0.25 2.43 2.41 2.43
LR 100:1 67.27 7.06 5.85 204.19 40.41 30.10
M5 100:1 65.66 7.24 7.94 347.60 177.92 107.73
NN 100:1 75.12 6.50 5.80 218.42 29.03 23.42
GMT 100:1 64.15 7.03 5.98 180.43 25.09 22.41
CGMT 100:1 4.46 4.46 4.46 16.08 16.01 16.07
± (stdev) – 0.36 0.36 0.36 2.91 2.90 2.91
CGMT (algorithms CGMTBSZ and CGMTLinear) has no impact on the
results. It proves that there is no more space for improvement for
CGMT with examined tuned methods.

The average AMC reduction between the best post hoc tuned
algorithm from Table 3 and CGMT varies between 11.8 % and 28.3 %.
The real improvement is much higher because the results are on a
natural logarithm scale that varies between 44.6 % and 99.9 %. We
believe that such error reduction could not be ignored by the institu-
tions struggling with the loan charge-off forecasting. The QuadQuad
loss function and cost ratio equals 100, and the AMC for NNLinear equals
14, 831, 216, 212 (e23.4), where for CGMT, the AMC is almost four orders
of magnitude smaller (9, 530, 426).

It can be expected that searching for cost-sensitive models directly
during induction results in finding better solutions. The first attempt
of CS-extensions for GMT applied to LinLin (algorithmGMTCS) [16] man-
aged to decrease the AMC and outperformed all tuned base regression
models under every cost ratio. However, our algorithm goes even
further — it significantly decreases the AMC in comparison to all tested
solutions. The CGMT solution can work with any convex function (in
contrast to GMTCS). The comparison results are enclosed in Table 4.
The average cost reduction between the GMTCS and CGMT is in the
range of 9.4 % to 15.4 % when the cost values are on a natural log
scale. Therefore, the real cost reduction on the original scale is in the
range of 26.7 % to 55.5 %. Unfortunately, we could not compare GMTCS
with CGMT using the QuadQuad loss function. However, the AMC
reduction for CGMT is expected to be higher than for GMTCS.

The Wilcoxon signed rank test between CGMT and GMTCS proved
that the differences between the algorithms are statistically significant
(P value b 0.0001). In addition, we have also tested within Weka
software two nonlinear regression models: RBF Network [9] that imple-
ments a normalized Gaussian radial basis function network and SMOreg
[46] that is the support vector machine for regression (with polynomial
kernel). Both tuned algorithms perform similar toGMTLinear, andNNLinear

and together with the rest of tested methods, they were statistically
worse than the CGMT solution.
5. Discussion

In Tables 3 and 4, we showed the average error results for 26
datasets. To prove that the CGMT algorithm is consistent in reducing
the AMC error, we present, in detail, the performance of the top three
algorithms: NNLinear, GMTCS, and CGMT. In the first experiment in
Tables 3 and 4, the LinLin loss function was used, and the cost ratio
was equal to 10. With these settings, the AMC reduction for CGMT was
the lowest due to a small penalty for wrong predictions. It is, however,
still significant. The results illustrated in Fig. 6 show that the proposed
solution is almost always better (and never worse) than NNLinear and
GMTCS on all 26 tested datasets. The cost values are on a natural log
scale, so, the real differences between CGMT and other solutions are
much higher.

We can also observe that the results of all algorithms strongly
depend on the quarter of the year. One of the reasons for poor predic-
tions at the beginning of each year is that the banks changed the cost-
ratio for this particular I quarter. The new year is always a difficult
time to forecast financial data, as all institutions need to publish their
annual reports, thus revealing their annual macroeconomic data. In
Table 4
Average misprediction cost (AMC) for GMTCS and CGMT. Algorithms used the LinLin loss
function.

Algorithm CS = 10 CS = 20 CS = 50 CS = 100

GMTCS 3.29 3.85 4.66 5.27
CGMT 2.98 3.43 4.02 4.46
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Fig. 6. Average misprediction cost for NNLinear, GMTCS, and CGMT on datasets with a cost
ratio equal to 10. Algorithms use the LinLin loss function.
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these uncertain times, banks increase their reserves tominimize the risk
of not covering their loan losses. However, seasonality affects quarterly
data for accounting as well as for economic reasons. For example, in
[33], the authors show that loan provisions are often delayed to the IV
fiscal quarter when the audit occurs. This factor would explain the
constant bad performance of algorithms in the IV quarter, especially
when prediction models are built using the previous values of Total
Loan Charge-offs (RIAD4635).

Besides prediction accuracy, there is one more important factor in
loan charge-off forecasting problems. Business analysts need a solution
that can provide new insights into underlying process that they
then try to understand. Fig. 7 illustrates an output tree for CGMT for
the first quarter of 2004 with a LinLin loss function and cost ratio
equal to 10.

The output tree of the CGMT algorithm is compact and can be easily
analyzed and interpreted, even in this form. Internal node tests consider
previous values of Total LoanCharge-offs (RIAD4635) and Total Loans Not
Accruing (RCFD1403). Models in the leaves also consider Noninterest
Income (RIAD4079) and Loans 90+ Days Late (RCFD1407). To calculate
the real value of the searched loan charge-off, the exponential value of
Fig. 7. The induced CGMT for the first quarter of 2004, w
prediction should be taken as the loan charge-off is on a natural log
scale. In addition, all attributes (except for RIAD4635, which is on a
natural log scale) represent the amount in thousands of dollars. There-
fore, for example, the first split checks if the loan charge-off is greater
than $391, 505, and if that is true, the predicted loan charge-off for the
tested bank can be calculated from the equation:

y ¼ e0:94�RIAD4635þ1:43
: ð14Þ

The AMC of this particular tree equals 1.545 and the tree has five
linear models with an average of 1.8 attributes in each linear model.
For this particular dataset (I 2004), the M5Linear output tree has
an AMC equal to 1.80, and the output tree is larger (19 leaves) and
uses an average of 12.1 attributes (from available 14) in each linear
model. To top it all off, the post hoc Linear tuning method must
be applied; therefore, each prediction of new instances must be multi-
plied by 0.83, and a value of 1.88 must be added. In this way, the M5
algorithm, which is generally considered as a “white box” solution
becomes a model that is really difficult to understand, analyze, and
interpret.

A small number of leaves and attributes in the linear models is
crucial to understanding the relationships in the data. It should be
noticed that the whole tree (tests in internal nodes and models in the
leaves) was designed to solve a cost-sensitive problem in the learning
phase by EA. The fitness function of CGMT, with its penalty term for
overgrown (number of leaves) and complicated (number of attributes
inmodels) trees, keeps output solutions as small and simple as possible.
Although induced trees by the CGMT system are different for each
quarter, there are similarities and patters between them that could be
helpful for bank analysts. In all performed experiments with different
cost ratios and loss functions, the trees induced by CGMT have an
average of 8.5 leaves with 1.47 attributes in each linear model. The
output trees for CGMT are in general three times smaller and have
eight times fewer attributes in linear regression models than the M5
solution.

Finally, the evolutionary approaches are not the fastest ones, and the
CGMT is not an exception. The average training time for the proposed
solution was from a few minutes to an hour for each dataset which,
considering the amount of data, is not a bad result. The execution of
the CGMT solution on test instances is very fast.

6. Conclusion and future works

In this paper, we proposed a cost-sensitive solution for model trees.
Specialized evolutionary algorithms that canworkwith any convex cost
ith cost ratio equal to 10 and LinLin loss function.
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function incorporated into the training process successfully dealt with
forecasting problems where under-prediction and over-prediction
errors had different consequences. With the memetic operators and
cost-sensitive fitness function, we managed to efficiently evolve simple
model trees that minimized the average misprediction cost.

Experimental validation was performed on 26 independent datasets
and over 200,000 instances were tested. We proved that the proposed
solution, CGMT, is significantly better than all post hoc tuned methods,
as well as other evolutionary approaches, such as GMTCS. The true
reduction of cost error varies between 26.7% and 99.9%. However,
the improvement was not only in the prediction accuracy. Equally
if not more important is the fact that the decisions and models
induced by CGMT can have direct applicability. They are simple, can be
easily understood, and consider costs of errors during the learning phase.

We see many promising directions for future research. In particular,
we are focused on extending CGMT to work withmultiple costs, such as
the cost of attributes. We also want to apply CGMT to different real-life
forecasting problems.
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