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A regression tree is a type of decision tree that can be applied to solve regression problems. One of
its characteristics is that it may have at least four different node representations; internal nodes can
be associated with univariate or oblique tests, whereas the leaves can be linked with simple constant
predictions or multivariate regression models. The objective of this paper is to demonstrate the impact
of particular representations on the induced decision trees. As it is difficult if not impossible to choose the
best representation for a particular problem in advance, the issue is investigated using a new evolutionary
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Data mining data. The proposed solution allows different leaves and internal nodes representation within a single tree.

Experiments performed using artificial and real-life datasets show the importance of tree representation
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in terms of error minimization and tree size. In addition, the presented solution managed to outperform
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popular tree inducers with defined homogeneous representations.
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1. Introduction

Data mining [18] can reveal important and insightful informa-
tion hidden in data. However, appropriate tools and algorithms are
required to effectively identify correlations and patterns within
the data. Decision trees [24,40| represent one of the main tech-
niques for discriminant analysis prediction in knowledge discovery.
The success of tree-based approaches can be explained by their
ease of application, fast operation, and effectiveness. Furthermore,
the hierarchical tree structure, in which appropriate tests from
consecutive nodes are sequentially applied, closely resembles a
human way of decision making. All this makes decision trees easy
to understand, even for inexperienced analysts. Despite 50 years of
research on decision trees, many problems still remain [30], such
as searching only for a locally optimal split in the internal nodes;
appropriate pruning criterion, efficient analysis of cost-sensitive
data or performing multi-objective optimization. To help resolve
some of these problems, evolutionary computation (EC) has been
applied to decision tree induction [2]. The strength of this approach
lies in the global search for splits and predictions. It results in higher
accuracy and smaller output trees compared to popular greedy
decision tree inducers.
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Finding appropriate representation of the predictor before
actual learning is a difficult task for many data mining algorithms.
Often, the algorithm structure must be pre-defined and fixed dur-
ing its life-cycle, which is a major barrier in developing intelligent
artificial systems. This problem is well known [20] in artificial neu-
ral networks where the topology and the number of neurons is
unknown, in support vector machines with their different types of
kernels, and in decision trees where there is a need to select the
type of node representation. One solution is to automatically adapt
the structure of the algorithm to the analyzed problem during the
learning phase, which can be accomplished using the evolution-
ary approach [27,33]. This approach is also applied to classification
trees [29,26] where a mixed test representation in the internal
nodes is possible.

In this paper, we want to investigate the role of regression tree
representation and its impact on predictive accuracy and induced
tree size as it has not been sufficiently explored. Using artificially
generated datasets, we will reveal the pros and cons of trees with
different representation types, focusing mainly on evolutionary
induced trees for regression problems [2]. Differences in the rep-
resentation of regression trees [30] can occur in two places: in the
tests in the internal nodes and in the predictions in the leaves. For
real-life problems, it is difficult to say which kind of decision tree
(univariate, oblique, regression, model) should be used. It is often
almost impossible to choose the best representation in advance. To
top it all, for many problems heterogeneous node representation
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is required within the same tree. This is why we also study a spe-
cialized evolutionary algorithm (EA) called the Mixed Global Model
Tree (mGMT). It induces a decision tree that we believe self-adapts
its structure to the currently analyzed data. The output tree may
have different internal node and leaf representations, and for a
given dataset it may be as good or even better than any tree with
strict representation.

The paper is organized as follows. The next section provides
a brief background on regression trees. Section 3 describes the
proposed extension for evolutionary inducers with homogeneous
representations. All experiments are presented in Section 4, and
the last section comprises the conclusion and suggestions for future
work.

2. Decision trees

We may find different variants of decision trees in the literature
[30]. They can be grouped according to the type of problem they
are applied to, the way they are induced, or the type of structure.
In classification trees, a class label is assigned to each leaf. Usu-
ally, it is the majority class of all training instances that reaches
that particular leaf. In this paper, we focus on regression trees that
may be considered variants of decision trees designed to approxi-
mate real-valued functions instead of being used for classification
tasks. Although regression trees are not as popular as classification
trees, they are highly competitive with different machine learning
algorithms [35] and are often applied to many real-life problems
[16,28].

In the case of the simplest regression tree, each leaf contains
a constant value, usually an average value of the target attribute.
A model tree can be seen as an extension of the typical regres-
sion tree [46,31]. The constant value in each leaf of the regression
tree is replaced in the model tree by a linear (or nonlinear) regres-
sion function. To predict the target value, the new tested instance
is followed down the tree from a root node to a leaf using its
attribute values to make routing decisions at each internal node.
Next, the predicted value for the new instance is evaluated based
on a regression model in the leaf. Examples of predicted val-
ues of classification, regression, and model trees are given in
Fig. 1. The gray level color of each region represents a different
class label (for a classification tree), and the height corresponds
to the value of the prediction function (regression and model
trees).

Most decision trees partition the feature space with axis-parallel
decision borders [44]. This type of tree is called univariate because
each split in the non-terminal node involves a single feature. For
continuous-valued features, inequality tests with binary outcomes
are usually applied, and for nominal features mutually exclusive
groups of feature values are associated with the outcomes. When
more than one feature is taken into account to build a test in an
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internal node, we deal with multivariate decision trees [8]. The
most common form of such a test is an oblique split, which is based
on a linear combination of features. The decision tree that applies
only oblique tests is often called oblique or linear, whereas hetero-
geneous trees with univariate, linear, and other multivariate (e.g.,
instance-based) tests are called mixed trees [29]. Fig. 2 shows an
example of univariate and oblique decision trees. We can observe
that if decision borders are not axis-parallel, then using only uni-
variate tests may lead to an overcomplicated classifier. This kind of
situation is known as a ‘staircase effect’ [8] and can be avoided by
applying more sophisticated multivariate tests. While oblique trees
are generally smaller, the tests are usually more difficult to inter-
pret. It should be emphasized that the computational complexity
of multivariate tree induction is significantly higher than that of
univariate tree induction [3].

The role of tree representation has so far been discussed mainly
in terms of classification problems. The study [25,8] shows that
univariate inducers return larger trees than multivariate ones,
and they are often less accurate. However, multivariate trees are
difficult to understand and interpret, and the tree induction is sig-
nificantly slower. Therefore, making a general conclusion is risky
as the most important factors are the characteristics of the par-
ticular dataset [25]. To the best of our knowledge, there is no
detailed report that refers to the role of representation in regres-
sion trees. It could be expected that univariate and multivariate
regression trees should behave similarly to the classification ones.
However, there is still an open question about the influence of
the leaves’ representation on the tree performance. The paper
focuses on evolutionary induced regression trees; therefore, to
go further, we must briefly describe the process of creating a
decision tree from the training set. The two most popular con-
cepts for the decision tree induction are the top-down and global
approaches. The first is based on a greedy procedure known as
recursive partitioning [39]. In the top-down approach, the induc-
tion algorithm starts from the root node where the locally optimal
split is searched according to the given optimality measure. Next,
the training instances are redirected to the newly created nodes,
and this process is repeated for each node until a stopping con-
dition is met. Additionally, post-pruning [15] is usually applied
after the induction to avoid the problem of over-fitting the training
data.

One of the most popular representatives of top-down induced
univariate regression trees is a solution proposed by Breiman et al.
called Classification And Regression Tree (CART) [7]. The algorithm
searches for a locally optimal split that minimizes the sum of
squared residuals and builds a piecewise constant model with each
terminal node fitted with the training sample mean. Other solutions
have managed to improve the prediction accuracy by replacing
single values in the leaves with more advanced models. The M5
system [46] induces a tree that contains multiple linear models in
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Fig. 1. Anillustration of predicted values of the classification, regression, and model trees.
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Fig. 2. An example of oblique and univariate decision trees.

the leaves. Asolution called Stepwise Model Tree Induction (SMOTI)
[31] can be viewed as an oblique model tree as the regression mod-
els are placed not only in the leaves but also in the upper parts of
the tree. All aforementioned methods induce trees with the greedy
strategy, which is fast and generally efficient but often produces
only locally optimal solutions.

The global approach for the decision tree induction limits the
negative effects of locally optimal decisions. It tries to simulta-
neously search for the tree structure, tests in the internal nodes, and
models in the leaves. This process is obviously much more compu-
tationally complex but can reveal hidden regularities that are often
undetectable by greedy methods. The global induction is mainly
represented by systems based on an evolutionary approach [2,4];
however, there are solutions that apply, for example, ant colony
optimization [36,6].

In the literature, there are relatively fewer evolutionary
approaches for the regression and model trees than for the clas-
sification trees. Popular representatives of EA-based univariate
regression trees are the TARGET solution [17] that evolve a CART-
like regression tree with basic genetic operators and the uGRT
algorithm [11] that introduces specialized variants of mutation and
crossover. A strongly typed GP (Genetic Programming) approach
called STGP was also proposed [21] for univariate regression tree
induction. There are also globally induced systems that evolve
univariate model trees, such as the E-Motion tree [1] that imple-
ments standard 1-point crossover and two different mutation
strategies and the GMT system [12] that incorporates knowledge
about the inducing problem for the global model tree into the
evolutionary search. There are also preliminary studies on oblique
trees called oGMT [10]. In the literature, we may also find the GP
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Fig. 3. The mGMT process diagram.

approach that evolves the model trees with nonlinear regression
models in the leaves called GPMCC [38]. It is composed from the
GP to evolve the structure of the model trees and GA to evolve
polynomial expressions (GASOPE) [37].

3. Mixed Global Model Tree

This paper focuses on the representation of globally induced
regression and model trees and its influence on the output tree.
In this section, we propose an extension for the GMT and GRT
systems [12] called the Mixed Global Model Tree (mGMT) to bet-
ter understand the underlying process behind the selection of the
representation. With the evolutionary tree induction, we are able
not only to search for an optimal tree structure, tests in internal
nodes, or models in the leaves but also to self-adapt the tree repre-
sentation. The general structure of the algorithm follows a typical
EA framework [32] with an unstructured population and a gen-
erational selection. It can be treated as a unified framework for
both univariate and oblique tests in the internal nodes and regres-
sion and models leaves. The mGMT does not require to set the
tree representation in advance because the EA validates differ-
ent variants of the representations not only on the tree level but
also on the node level and may induce a heterogeneous tree that
we called a mixed tree. A description of the proposed approach is
given, especially with respect to issues that are specific to mixed
trees.

The process diagram of the mGMT algorithm is illustrated in
Fig. 3. The proposed solution evolves the regression and model trees
in their actual forms. The candidate solutions that constitute the
population are initialized with the semi-random greedy strategy
and are evaluated using the multi-objective weight formula fitness
function. If the convergence criteria is not satisfied, a linear rank-
ing selection is performed together with the elitist strategy. Next,
genetic operators are applied, including different variants of spe-
cialized mutations and crossovers. After the evolution process is
finished, the best individual found using the EA is smoothed. Each
element of the mGMT solution is discussed in detail in the following
sections.

3.1. Representation

A mixed regression tree is a complex structure in which the
number and the type of nodes and even the number of test
outcomes are not known in advance for a given learning set.
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Fig. 4. An example representation of the mGMT individual.

Therefore, the candidate solutions that constitute the population
are not encoded and are represented in their actual form (see
Fig. 4).

There are three possible test types in the internal nodes: two
univariate and one multivariate. In the case of univariate tests,
a test representation concerns only one attribute and depends
on the considered attribute type. For continuous-valued features,
typical inequality tests with two outcomes are used. For nomi-
nal attributes, at least one attribute value is associated with each
branch starting in the node, which means that an internal disjunc-
tion is implemented. Only binary or continuous-valued attributes
are used to construct the oblique split. The feature space can be
divided into two regions by a hyperplane:

H(w, 0) = {x: (w, X) =6}, @)

where X is a vector of feature values (objects), w = [wy, ..., wp]isa
weight vector, 0 is a threshold, (w, X) represents an inner product,
and P is the number of independent variables. Each hyperplane is
represented by a fixed-size P+1 - dimensional table of real num-
bers corresponding to the weight vector w and the threshold 6.

In each leaf of the mGMT system, a multiple linear model can
be constructed using the standard regression technique. It is cal-
culated only for objects associated with that node. A dependent
variable y is explained by the linear combination of multiple inde-
pendent variables xq, x5, . . ., Xp:

y:ﬂo—i-ﬂ]*X1+ﬂ2*X2+...+ﬂp*Xp, (2)

where By, ..., Bp are fixed coefficients that minimize the sum of
the squared residuals of the model. If all B; (0<i<P) are equal to
0, the leaf node will be a regression node with a constant equal
to Bo. If only one B; #+ O then, we deal with simple linear regres-
sion; otherwise each leaf contains simple or multivariate linear
regression.

3.2. Initialization

Each initial individual in the population is created with the clas-
sical top-down approach that resembles the M5 solution [46]. The
initial population of mGMT is heterogeneous and is composed of
five types of standard regression trees with different represen-
tations (four homogeneous and one heterogeneous): a univariate
regression tree; an oblique regression tree; a univariate model tree;
an oblique model tree; and a mixed tree that contains different
kinds of tests in the internal nodes (univariate and oblique) and dif-
ferent types of leaves (regression and model). In mixed trees, before
each step of recursive partitioning, the type of node is selected
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Fig. 5. Hyperplane initialization based on randomly chosen ‘long dipole’ (left) and an example illustrating how the oblique test is created (right).

randomly and an appropriate test or model is generated. The impor-
tance of such a heterogeneous initial population is its diversity.
The recursive partitioning is finished when the dependent value
is predicted for all training objects in the node or the number of
instances in the node is small (default: five instances). Each ini-
tial individual is created based on a semi-random subsample of the
original training data (default: 10% of data) to keep the balance
between exploration and exploitation. To ensure that the subsam-
ple contains objects with various values of the predicted attribute,
the training data is sorted by the predicted value and split into a
fixed number of equal-size folds (default: 10). From these folds,
an equal number of objects is randomly chosen and placed into
the subsample. Tests in non-terminal nodes are calculated from a
random subset of attributes (default: 50%).

In the case of the univariate internal nodes, one of three memetic
search strategies [12] thatinvolves employing the locally optimized
tests is chosen:

e Least Squares (LS): the test in the internal node is chosen accord-
ing to the node impurity measured by the sum of the squared
residuals.

Least Absolute Deviation (LAD): the test reduces the sum of the
absolute deviations. It is more robust and has greater resistance
to outlying values than LS.

Dipolar: the test is constructed according to the ‘long dipole’ [12]
strategy. At first, an instance that will constitute the dipole is
randomly selected from the set of instances from the current
node. The rest of the feature vectors are sorted in decreasing
order according to the difference between the dependent vari-
able values and the selected instance. The second instance that
constitutes the dipole should have a much different value than
the dependent variable. To find it, we applied a mechanism simi-
lar to the ranking linear selection [32]. Finally, the test that splits
the dipole is constructed based on a randomly selected attribute
where the boundary threshold is defined as a midpoint between
the pairs that constitute the dipole.

The search strategy used to find splits in the internal nodes is
different for the oblique tests. An effective test in a non-terminal
node is searched only using the dipolar strategy. Fig. 5 (left) illus-
trates the hyperplane initialization based on a randomly chosen
‘long dipole’. The hyperplane H(w, 6) splits the dipole (x/, x/) in
such a way that the two feature vectors x! and X’ are situated on
the opposite sides of the dividing hyperplane:

((w, x) — ) ((w, %) —0) <0. 3)

The hyperplane parameters are as follows: w= xi—x/ and
0=56"(w,x"y+(1-5)*(w, x/), where § € (0, 1) is a randomly drawn
coefficient that determines the distance between the opposite ends

of the dipole. Hj(w, 0) is perpendicular to the segment connecting
the dipole ends.

To provide a numeric example illustrating how an oblique test
is created, let’s imagine the two 2 dimensional space illustrated in
Fig. 5 (right). After the selection of two randomly chosen dipoles
with Cartesian coordinates equal to A(1, 1), B(5, 3), and coefficient
6=0.5, the splitting hyperplane H parameters are: w[5 - 1,3 — 1]
and #=05*((5-1)*(1+5))+0.5*((3—-1)*(1+3))=16. Therefore,
the hyperplane Hup is a line described as: y=—2*x+8. To per-
form a split, we simply check on which side of the hyperplane
H all instances from the internal node are positioned. Let’s con-
sider point C(1.5, 2.5). By applying it to the hyperplane equation w
(1.5%4+2.5*2), we see that the score 11 is smaller than the value
of f. Using a different point, for example, D(3.5, 4.5) would result in
value 23, which means that the point D lies on the opposite side of
the hyperplane to point C. For this particular example, the parame-
ter § equals 0.5; therefore, the hyperplane w intersects the midpoint
between dipoles A and B. However, if we change the parameter to
4=0.1, then the hyperplane denoted as H; shifts towards point A.
We can observe that for this hyperplane H' point C and point D lie
on the same side and thus both instances would be directed after
the split to the same sub-node.

3.3. Goodness of fit

The evolutionary search process is very sensitive to the proper
definition of the fitness function. In the context of regression trees,
a direct minimization of the prediction error measured in the
learning set usually leads to the over-fitting problem. In typical
top-down induction of decision trees [39], this problem is par-
tially mitigated by defining a stopping condition and by applying
post-pruning [15]. In the case of the evolutionary approach, the
multi-objective function is required to minimize the prediction
error and the tree complexity at the same time.

In our approach, a Bayesian information criterion (BIC) [41] is
used as a fitness function. It was shown that this criterion worked
well with regression and model trees [17,12] and outperforms other
popular approaches. BIC is given by:

Fitgic(T) = =2 x In(L(T)) + In(n) = k(T), (4)

where L(T) is the maximum of the likelihood function of the tree T,
n is the number of observations in the data, and k(T) is the number
of model parameters in the tree. The log(likelihood) function L(T)
is typical for regression models and can be expressed as:

In(L(T)) = —0.5n + [In(27) + In(SSe(T)/n) + 1], (5)

where SS¢(T) is the sum of squared residuals of the tree T. The term
k(T) can also be viewed as a penalty for over-parametrization.

The proposed mixed tree representation requires defining a new
penalty for the tree over-parametrization. It is rather obvious that
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in internal nodes an oblique split based on a few features is more
complex than a univariate test. The same applies to the different
leaf representations. As a consequence, the tree complexity k(T)
should not only reflect the tree size but also the complexity of the
tests in internal nodes and models in the leaves. However, it is not
easy to arbitrarily set the importance of different measures because
it often depends on the dataset being analyzed. In such a situation,
the tree complexity k(T) is defined as:

K(T) = oq % Q(T) + otz % O(T) + o3 % W(T), (6)

where Q(T) is the number of nodes in the model tree T; O(T) is equal
to the sum of the number of non-zero weights in the hyperplanes in
the internal nodes, and W(T) is the sum of the number of attributes
in the linear models in the leaves. Default values of the parame-
ters are o1 =2.0, a3 =1.0, and a3 =1.0; however, further research
to determine their values is needed. If the i-th internal node T; is
univariate, the value of O(T;) equals 1. If the j-th leaf contains a con-
stant value, then the parameter W(T;) equals zero because there
are no attributes in the linear model. Otherwise, the value of O(T;)
and W(T;) equals the number of attributes used to build the test in
internal node i or the model in leafj.

The flexibility of the fitness function allows its simple config-
uration based on additional knowledge or user preferences, for
example, if users know the basic relationships in the data or want to
limit tree representations to the desired ones, the fitness function
can assign a high value to a5 or a3 or both.

3.4. Genetic operators

To maintain genetic diversity, the mGMT algorithm applies two
specialized genetic operators corresponding to classical mutation
and crossover. In globally induced trees with strict representations,
there are several variants of the operators [11,12]; however, their
availability mainly depends on the representation type. Both oper-
ators are applied with a given probability and influence the tree
structure, the tests in non-terminal nodes, and optionally the mod-
els in the leaves. After any successful mutation or crossover, it is
usually necessary to relocate learning vectors between the parts of
the tree rooted in the altered node. This can cause pruning of certain
parts of the tree that do not contain any learning vectors. In addi-
tion, the corresponding models in the affected individual leaves are
recalculated. Due to performance reasons, the coefficients in the
existing linear models are recalculated to fit a randomly selected
sample of the actual data (no more than 50 instances) in the corre-
sponding leaves.

Each crossover begins with randomly selecting two individuals
from the population that will be affected. Next, the crossover points
in both individuals are determined. We have adapted all variants
proposed in the univariate tree inducer [ 12] to work with the mixed
representation, visualized in Fig. 6:

(a) exchange subtrees: exchanged of subtrees starting in randomly
selected nodes;

(b) exchange branches: exchanges of branches that starts from
selected nodes in random order;

(c) exchange tests: recombines the tests (univariate nominal,
univariate continuous-valued, and oblique) associated with
randomly selected internal nodes;

(d) with best: crossovers with the best individual;

(e) asymmetric: duplicates subtrees with small mean absolute
errors and replaces nodes with high errors.

Selected nodes for the recombination must have the same
number of outputs; however, they may have different represen-
tations. This way crossovers shift not only the tree structure but
also the nodes’ representations. In the variants (d) with best and

(e) asymmetric, the additional mechanism is applied to decide
which node would be affected. The algorithm ranks all tree nodes
in both individuals according to their absolute error divided by
the number of instances in the node. The probability of select-
ing nodes is proportional to the rank in a linear way. The nodes
with a small average error per instance are more likely to be
donors, whereas the weak nodes (with a high average error per
instance) are more likely to be replaced by the donors from the
second individual (and have a higher probability of becoming
receivers).

The mutation of an individual starts with the selection of a node
type (equal probability of selecting a leaf or an internal node).
Next, a ranked list of nodes of the selected type for this individ-
ual is created. Depending on the type of node, the ranking takes
into account the location for internal nodes (nodes in the lower
parts of the tree are mutated with higher probability) and the pre-
diction error of the node (nodes with a higher error per instance
are more likely to be mutated). Finally, a mechanism analogous to
the ranking linear selection [32] is applied to decide which node
in the individual will be affected. Depending on the node’s repre-
sentation, different variants of operators are available in internal
nodes:

e prune: changes internal node to a leaf (acts like a pruning proce-
dure);

e parent with child (branches): replaces a parent node with a ran-
domly selected child node (internal pruning);

e parent with child (tests): exchanges tests between parent and ran-

domly selected child nodes;

new dipolar test: tests in affected node is reinitialized by a new

one selected using the dipolar strategy;

new memetic test: tests in node is reinitialized by one of the opti-

mality strategies proposed in Section 3.2;

modify test: shifts hyperplane or set random weights (oblique

test); shifts threshold (univariate test on a continuous attribute)

or re-groups nominal attribute values by adding/merging

branches or moving values between them;

recalculate models: recursively recalculates linear models using

all the instances in the corresponding leaves;

and in the leaves:

e dipolar expand: transforms leaf into internal node with a new
dipolar test (random type);

e memetic expand: transforms leaf into internal node with a new
test selected by one of the optimality strategies;

e change model: extends/simplifies/changes the linear model in the
leaf by adding/removing/replacing a randomly chosen attribute
or removing the least significant one.

For a more detailed description of mutation variants, please refer
to[12].

In addition, we propose a new mechanism called Switch that
assures the diversity of node representations within the population.
It is embedded in the specified variants of the mutation (prune,
expand, and new test) that require finding new tests in the internal
nodes or models in the leaves. The Switch mechanism with assigned
probability changes the initial representation of the selected nodes:

e the testin the internal node when calculating a new test with the
same number of outputs:
- with the change from univariate to oblique (internal nodes),
a new calculated hyper-plane involves an attribute from the
univariate test;
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Fig. 6. Visualization of crossovers, from top left to bottom right: (a) exchange subtrees, (b) exchange branches, (c) exchange tests, (d) with best, and (e) asymmetric.

- with the change from oblique to univariate (internal nodes), a
new univariate test is based on a randomly selected attribute
from the oblique test.

e newly created nodes that inherit their representation from the
initial representation

- leaves flip representation from the regression constant value to
linear regression model (or vice versa) when pruning internal
nodes;

- internal nodes flip representation from the oblique test to the
univariate one (or vice versa) when expanding the leaves.

In the rest of the mutation variants, the Switch mechanism is
not applied. Preserving the representation in, for example, the mod-
ify test or change model variant allows exploring the neighborhood
space of solutions rather than starting the search from a new place.

3.5. Selection, termination condition, and smoothing

The ranking linear selection is applied as a selection mechanism.
In each generation, the single individual with the highest value of
the fitness function in the current population is copied to the next



M. Czajkowski, M. Kretowski / Applied Soft Computing 48 (2016) 458-475 465

one (elitist strategy). Evolution terminates when the fitness of the
best individual in the population is not improved during the fixed
number of generations (default: 1000). In the case of a slow con-
vergence, the maximum number of generations is also specified
(default value: 10,000) to limit the computation time.

The mGMT system uses a form of smoothing that was initially
introduced in the M5 algorithm [46] for a univariate model tree. As
in the basic GMT solution [12], the smoothing is applied only to the
best individual returned by EA when the evolutionary induction is
finished. The role of the smoothing is to reduce sharp discontinu-
ities that occur between adjacent linear models in the leaves. For
every internal node of the tree, the smoothing algorithm generates
an additional linear model that is constituted from features that
occur along the path from the leaf to the node. This way, each tested
instance is predicted not only by a single model at a proper leaf but
also by the different linear models generated for each of the inter-
nal nodes up to the root node. Due to the oblique splits that may
appear in the tree induced by the mGMT system, we have updated
the smoothing algorithm to use all attributes that constitute the
tests in the internal nodes.

4. Experimental validation

To verify the role of tree representations, we have performed
experiments on both artificial and real life datasets. In the first sec-
tion below, the impact of the tree representation is assessed using
four algorithms with different homogeneous representations and
the proposed mGMT inducer. Next, the mGMT solution is com-
pared with the results from paper [23] that cover experiments
with popular tree inducers on publicly available datasets. Finally,
the prediction performance of the proposed solution is tested on a
larger group of publicly available datasets.

In all experiments reported in this section, a default set of
parameters for all algorithms is used in all tested datasets. Results
presented in the paper correspond to averages of 50 runs.

4.1. Role of the tree representation

In this section, five types of tree representations are analyzed:

univariate Global Regression Tree (denoted as uGRT) that has
axis-parallel decision borders and simple constant predictions in
the leaves;

univariate Global Model Tree (uGMT) that has axis-parallel deci-
sion borders and multivariate linear regression models in the
leaves;

oblique Global Regression Tree (oGRT) that constructs oblique
splits on binary or continuous-valued attributes in the internal
nodes;

oblique Global Model Tree (0GMT) - the most complex tree
representation (oblique splits and multivariate linear regression
models);

mixed Global Model Tree (mGMT) that self-adapts the tree rep-
resentation to the currently analyzed data.

The first four algorithms are based on the existing solutions
[10-12], and the proposed mGMT algorithm can be treated as an
extension and unification.

The impact of representation on the tree performance is tested
on two sets of artificially generated datasets:

e armchair - variants of the dataset proposed in [11] that require
at least four leaves and three splits;

® noisy — datasets with various data distributions and additional
noise.

Table 1
Default parameters of uGRT, uGMT, oGRT, oGMT and mGMT.

Parameter Value

50 individuals
20% assigned to the tree
Mutation rate 80% assigned to the tree
Elitism rate 2% of the population (1 individual)
Maximum amount of generation 1000
without improvement
Max total number of generation

Population size
Crossover rate

10,000

All artificial datasets have analytically defined decision borders
that fit to particular tree representations: univariate regression
(UR), univariate model (UM), oblique regression (OR), oblique
model (OM), and mixed (MIX). Each set contains 1000 instances,
where 33% of the instances constitute the training set and the rest of
the instances constitute the testing set. A visualization and descrip-
tion of the artificial datasets are included in Appendix.

4.1.1. Parameter tuning

Parameter tuning for EAs is a difficult task. Hopefully, all
important EA parameters (e.g., population size, the probability of
mutation and crossover, etc.) and the decision tree parameters
(maximum size, minimum objects to make a split) were exper-
imentally validated and tuned in previous papers for trees with
homogeneous representations [12]. Those general settings should
also work well with the mixed regression trees; therefore, they
can be treated as default. The main parameter for all algorithms is
given in Table 1 and the probabilities of selecting mutation opera-
tor variants are shown in Table 2 (the probability of selecting each
crossover variant is equal to 20%). This way, only the role of the
Switch mechanism that is embedded in different variants of muta-
tion operators and directly switches the node representation, for
example, from univariate to oblique in the internal node and from
constant prediction to multivariate linear regression model in the
leaf, should be investigated.

Parameter tuning was performed on the armchair dataset (ver-
sion AMix1) according to the guidelines proposed in [14]. Four
different Switch mechanism values that correspond to the prob-
ability of node representation change were tested: 0.0, 0.1, 0.25,
and 0.5. The impact of this setting on the proposed mGMT solution
and on the rest of the tree inducers with a homogeneous initial
population was checked. For example, when the uGRT algorithm
is evaluated and the Switch mechanism is enabled, then the repre-
sentation of mutated nodes with assigned probabilities can change.
This way, the algorithm can have a mixed representation and is
able to have oblique splits or multivariate regression models in
the leaves. Figs. 7 and 8 show the tree error (RMSE) of the best

Table 2
Probability of selecting a single variant of the mutation operator in uGRT, uGMT,
oGRT, oGMT, and mGMT.

Mutation operator Probability in:
uGRT &0GRT uGMT, oGMT
&mGMT
prune 30 20
parent with son (branches) 5
parent with son (tests) 2.5
new dipolar test 10
new memetic test 2.5
modify test 15
recalculate models 2.5
dipolar expand 30 20
memetic expand 2.5
change model 0 20
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Fig. 7. Impact of the Switch mechanism on the best individual for the uGRT, uGMT, oGRT, and oGMT inducers on the armchair AMix1 dataset.

individual during the learning phase performed on the training set
for all five algorithms: uGRT, uGMT, oGRT, oGMT, and mGMT.

One can observe that the impact of the Switch mechanism
is especially visible for the algorithms with homogeneous initial
populations. In the Fig. 7, enabling the Switch is the only way to find
optimal solutions for the uGRT, oGRT, and uGMT algorithms. When
the Switch is set to 0.5, which equals to the random representation
selection, the inducers have the fastest convergence. In the oGMT

algorithm, which is capable of finding the optimal solution on its
own, the application of the Switch mechanism shortens the induc-
ers’ convergence time. A statistical analysis of the results using the
Friedman test and the corresponding Dunn’s multiple comparison
test (significance level equals 0.05), as recommended by Demsar
[13], showed that there exists significant differences between the
Switch parameter setting for all four algorithms with strict repre-
sentations. The performed experiments showed that the optimal
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Fig.8. Impact of the Switch mechanism on the best individual for the mGMT inducer
on the armchair AMix1 dataset.

Switch settings for the inducers with homogeneous representation
is 0.5, which equals a random representation of the newly created
node.

The mGMT results visualized in Fig. 8 show there are no big dif-
ferences between the algorithms with various Switch settings. This
can be explained by the construction of the initial population of the
algorithm, which is composed of five types of representations. The
individual representations can be successfully combined with the
crossover operators. However, we can observe a slight improve-
ment in the algorithm convergence to the optimal solution when
the Switch mechanism is enabled.

4.1.2. Comparison of representations

To show the impact of tree representation, five inducers were
tested on two groups of datasets, armchair and noisy (each set with
six variants), described in Appendix. Four metrics were collected
and illustrated:

e Root Mean Squared Error (RMSE) calculated on the testing set
(Fig. 9);
e average number of leaves in the tree (Fig. 10);

1.4 ©DuGRT OuGMT ®oGRT moGMT EmGMT

1,2

0,8

0,6 -

04 |

Root Mean Squared Error (RMSE)

0.2

, M

AUR AUM AOR AOM AMixl

AMix2

e average number of attributes in the regression models in the
leaves (Fig. 11). Univariate inducers are not shown as the average
number of tests is always equal to their size decreased by 1;

e average number of attributes in the tests in the internal nodes
(Fig. 12). Regression inducers are not shown as there are no mod-
els in the leaves; therefore, the average number of attributes is
always equal to zero.

All four figures should be analyzed at the same time to under-
stand how each global inducer works.

Artificial datasets were designed to be solved by one of the tested
systems and the abbreviations of datasets reveal which inducer is
most appropriate to use. In general, all inducers with the appropri-
ate individual representation managed to successfully induce the
defined tree. However, when the representation does not fit the
specifics of the dataset, it is too simple (univariate split, regres-
sion leaf) or too advanced (oblique split, model in the leaf), and the
evolutionary inducers with homogeneous representations some-
times have difficulty finding an optimal solution. In contrast to
the four global inducers with defined representations (UGRT, oGRT,
uGMT, and oGMT), the mGMT system has flexible representation.
The results presented in Figs. 9-12 show that mGMT successfully
adapts the tree structure to the specifics of each artificially gener-
ated dataset. In the datasets denoted as UR, UM, OR, and OM, the
mGMT system managed to keep up with the algorithms whose
structure fitted the characteristics of the datasets. As for the Mix
dataset variants, mGMT managed to outperform the rest of the tree
inducers.

There are at least two reasons why the systems with strict rep-
resentations of the individuals have difficulty with some variants
of the datasets. The first reason is the limitation in the individuals’
representation. The no axis-parallel decision borders can easily be
solved with oGRT or oGMT algorithms. The application of univariate
splits may cause the ‘staircase effect’ [8]. This problem is similar for
theregression trees applied for the UM and OM datasets that require
regression models in the leaves. To overcome these restrictions in
the representation, regression trees (UGRT, uGMT, oGRT) increase
their tree sizes; however, the limitation still exists. The large size of
the induced tree influences not only its clarity but may cause over-
fitting to the training data and thus a larger prediction error. Let us
explain this for different variants of the armchair dataset described
in Appendix:

RMSE

0,06

0,04

0,02

NOR NOM

Fig. 9. Relative Mean Squared Error (RMSE) of the algorithms on 12 artificial datasets described in Appendix. Tested algorithms: univariate Global Regression Tree (uGRT),
oblique Global Regression Tree (oGRT), univariate Global Model Tree (uGMT), oblique Global Model Tree (0GMT), and mixed Global Model Tree (mGMT). For illustrative

purposes, the values of the RMSE error for the noisy dataset have been rescaled.
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Fig. 10. Average number of leaves in the tree for different GMT variants. The defined bars represent the reference values that are equal to the optimal numbers of leaves for

the datasets.

e AUR - can be perfectly predicted by univariate regression trees.
All aforementioned inducers are capable of finding decision trees
with small RMSE (Fig. 9), four leaves (Fig. 10), three univariate
splits (Fig. 11), and no regression model in the leaves (Fig. 12).
Even the oGMT system managed to find the decision borders
despite its advanced node representation of the individuals. The
univariate split is just a special case of an oblique split, and a
constant value is just a special case of a regression model.

AUM - can be perfectly predicted by univariate model trees.
This dataset is difficult for the uGRT and oGRT systems because
they induce only the regression trees. For these systems, we can
observe a much higher error rate (RMAE) and trees that are 2-3
times larger. It is typical for the regression trees to reduce the tree
error by adding many leaves with a small number of instances. In
addition, the oGRT inducer applied unnecessary oblique splits in
order to minimize RMSE. The rest of the algorithms had no prob-
lem with this dataset and induce trees with four leaves, three

univariate splits, and usually perfect regression models in the
leaves.

® AOR - can be perfectly predicted by oblique regression trees. The
application of the algorithms with univariate tests (UGRT and
uGMT) to the dataset with non-axis parallel decision borders led
to their approximation by a very complicated stair-like structure.

* AOM, AMix1, and AMix2 - can be perfectly predicted only by the
inducers with the most advanced tree representation (oblique
splits and models in the leaves). Therefore, it is not surprising
that the algorithms uGRT, oGRT, and uGMT induce overgrown
decision trees. It is worth noting that of those three systems,
the largest trees are induced by the system that has the most
limitations in the representation of the individuals — the uGRT.

The second issue is the large search space of the inducers with
advanced tree representation that requires extensive calculations
to find a good solution. It can be observed especially for the trees

BoGRT BoGMT SmGMT

204‘

B Defined i

18

16

14

12

Average number of attributes in tests

AUR AUM AOR AOM AMixl

AMix2

NUR NUM NOR NOM

NMix1 NMix2

Fig. 11. The sum of an average number of attributes used in the internal node tests for different GMT variants. The defined bars are equal to the optimal numbers of attributes

in the internal node tests.
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Fig. 12. The sum of an average number of attributes that constitute leaves’ models for different GMT variants. When the induced tree has only regression leaves, then no
value appears on the chart as in the AUR or NUR dataset. The defined bars are equal to the optimal numbers of attributes in the leaves’ modes.

with oblique splits. Theoretically, the oGMT system should be able
to find optimal decisions in all datasets as it induces trees with
the most complex representation. However, we can observe that
the trees induced by the oGRT and oGMT systems do not always
have an optimal structure (even if they are capable of finding it).
For the simplest datasets like AUR, the inducers with oblique splits
need significantly more time than the uGRT solution (which finds
optimal decisions almost instantly). This situation is illustrated in
Fig. 13. Although the mGMT system needed additional iterations to
set the appropriate tree representation, it still outperforms oGRT
and oGMT. In Fig. 13, we can see that the largest number of itera-
tions is required by the inducers with oblique splits in the internal
nodes. The oGRT and oGMT systems needed significantly more iter-
ations than uGRT but managed to successfully reduce the prediction
error calculated on the training set to zero. It can be seen that the
oGMT inducer did not find the optimal tree size for all 50 runs. For
a few runs, the oGMT algorithm needed over 10,000 iterations, but
additional experiments showed that it is capable of finding optimal

T T 0.3
mGRT RMSE ——
mGRT Size —+—
uGRT RMSE ——
uGRT Size —+—
oGRT RMSE --------
OoGRT Size ---+---
uGMT RMSE
uGMT Size -+
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Fig. 13. Influence of the tree representation on the performance of the best individ-
ual on the AUR training set for 5 inducers.

trees. In addition, the loop time for global inducers differs signifi-
cantly, as different variants of mutation operators are applied. The
average loop times (in seconds) calculated for all iterations of all
artificial datasets are shown in Table 3.

All observations made for the armchair dataset are also con-
firmed for the noisy dataset. The mGMT solution managed to find
all defined splits and models despite the noise and different data
distributions. From the dataset visualization included in Appendix,
it can be seen that finding appropriate decision borders is not an
easy task. The oGMT usually kept up with mGMT because the deci-
sion tree was smaller (the defined tree has two internal nodes and
three leaves).

From the performed experiments, we can observe that every
inducer with the strict tree representation has its pros and cons.
The systems for univariate regression trees are very fast and gener-
ate simple tests in internal nodes; however, the tree error and size
are usually large. Oblique regression trees are slightly smaller and
more accurate, but the searching of the splitting rules is much more
computationally demanding and the simplicity of the output tree
is lost. The results generally confirm what is observed for the uni-
variate and oblique classification trees. Currently, the most popular
trees for the regression problems are univariate model trees. From
the results, we see that they have a good trade-off between the
tree complexity and the prediction performance; induced trees are
accurate and relatively small. Theoretically, if the computational
complexity of the algorithm was not an issue, the oblique model
trees should be as good as all aforementioned algorithms in terms of
prediction power. Unfortunately, the induction time and the com-
plexity of the solution often hinder the practical application of the
inducer, especially for the large datasets.

If we knew the characteristics of the dataset we could pre-select
the inducer with the most appropriate representation. However,
this is often not the case; therefore, it may be better to consider

Table 3

Average single loop times of all iterations of all datasets for different systems.
Algorithm uGRT uGMT oGRT oGMT mGMT
Average time 0.0013 0.0036 0.0017 0.0043 0.0024
+(stdev) 0.0002 0.0004 0.0005 0.0010 0.0003
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a system like mGMT that is able to self-adapt to the analyzed
data. The mGMT system managed to gain advantages from all
four inducers and limit the disadvantages. It has the best perfor-
mance in terms of tree error and size among all systems for all
datasets. According to the Friedman test, there exists significant
differences in RMSE and the tree size between induced trees in
favor of mGMT (significance level equal to 0.05, P value <0.0001,
F-statistic=175.8). The corresponding Dunn’s multiple compari-
son test showed a significant difference in rank sum for RMSE
between the mGMT and uGRT systems and between the mGMT and
oGRT systems, and for tree size between themGMT and all other
systems.

4.2. mGMT vs. popular tree approaches

In this set of experiments, we compared the proposed mGMT
inducer with different popular tree approaches. In order to make
a proper comparison with the state of the art and the latest algo-
rithms in the literature, we selected the benchmark datasets also
used in [23]. We precisely followed the preprocessing and the
experimental procedure in [23] to make the comparison to the
results of that paper as accurate as possible. Two popular syn-
thetic datasets and two real-life datasets from the well-known UCI
Machine Learning Repository [5] were used:

e Fried - artificial dataset proposed by Friedman [25] containing
ten independent continuous attributes uniformly distributed in
the interval [0,1]. The value of the output variable is obtained
with the equation:

y = 10 % Sin(7 # X1 % Xp) + 20 % (X3 — 0.5)%
+10%x4 +5%x5 +0(0, 1);

e 3DSin - artificial dataset containing two continuous predictor
attributes uniformly distributed in interval [3,3], with the output
defined as

y = 3% sin(xq) % sin(xy);

Table 4

¢ Abalone - dataset used to predict the age of abalone from phys-
ical measurements (4177 instances with eight attributes — one
nominal and seven continuous);

e Kinman - dataset containing information on the forward kine-
matics of an eight link robot arm (8192 instances with eight
continuous attributes).

As in previous research [23], 3000 points were generated and
the data was normalized to zero mean and unit variance for both
artificial datasets.

We recalled the results of four algorithms, performed testing
using WEKA software [19] on two additional tree inducers, and
included the results for our mGMT system:

e Hinge algorithm [23] that is based on on hinging hyperplanes
identified by a fuzzy clustering algorithm;

e FRT - fuzzy regression tree;

e FMID - fuzzy model identification;

e CART - state-of-the-art univariate regression tree proposed by
Breiman et al. [7];

e REPTree (RT) - popular top-down inducer that builds a univariate
regression tree using variance and prunes it using reduced-error
pruning (with backfitting);

e M5 - state-of-the-art univariate model tree inducer proposed by
Quinlan [46];

e mGMT - proposed global tree inducer with mixed representation.

The performance of the models is measured by the (RMSE), a
well known regression performance estimator. Testing was per-
formed with 10-fold cross-validation, and 50 runs were performed
for the tested (by the authors) algorithms. We have also included
the information about the algorithms’ standard deviation (unfortu-
nately [23], do not include this information). The results shown in
Table 4 indicate that the mGMT solution can successfully compete
with popular decision tree inducers.

As the mean value is not presented in the research [23], we have
performed Friedman tests (significance level equal to 0.05) using
RMSE error values on two groups:

e mGMT vs Hinge, FRT, FMID and CART;
e mGMT vs uGRT, uGMT, oGRT, oGMT, RT and M5.

Comparison of RMSE results of different algorithms. Algorithms with * were tested in [23] and their results are recalled. Results for mGMT also include the standard deviation
of RMSE and the number of leaves in the tree. The smallest RMSE and size results for each dataset are bolded.

Algorithm Metric Fried 3DSin Abalone Kinman
Hinge" RMSE 092 0.18 41 0.16
nge Leaves 8 1 8 6
. RMSE 2.12 0.17 2.87 023
CART Leaves 4956 323.1 664.8 4539
. RMSE 241 031 2.19 020
FMID Leaves 12 12 12 12
. RMSE 0.70 0.18 219 0.15
FRT Leaves 15 12 4 20
RMSE 225+0.10 0.6+0.01 233+0.13 0.1940.01
RT Leaves 44574376 724.2+30.1 168.8+33.7 7208+ 78.1
RMSE 1.81+0.09 0.23+0.01 2.12+0.14 0.16+0.01
M5 Leaves 5254135 1973+11.8 8.59+32 109.7+18.0
RMSE 0.67+0.01 0.15+0.003 2134008 0.14+0.001
mGMT Leaves 149422 53.6+8.9 21407 6.4+13
RMSE 3.6640.09 0.53+0.04 2.55+0.03 0.21+0.007
uGRT Leaves 115408 40.0+0.54 44+034 11.4+12
RMSE 0.66+0.01 0.1540.003 2.19+0.001 0.1640.002
uGMT Leaves 16.4+0.43 563+1.9 214003 8.6+0.6
RMSE 3.4140.05 0.62+0.008 2.50+0.10 0.1940.01
OGRT Leaves 5.7+0.03 225413 344005 66402
RMSE 1.13+0.02 0.15+0.01 2214005 0.17+0.001
oGMT Leaves 6.6+0.4 447419 2.1+0.09 44402
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-0.83%x;- 0.78%x5- 0.84%x;+ 0.54%c, < 0.27

Linear Models (LM) in the leaves:

x5<-0.24 x;<-0.14

LM,: -0.06%x)- 0.02%, - 0.15%c,+ 0.08%c; + 0.04%x, + 0.1%cs + 0.1%x4- 0.08%c, + 0.93
LM,: -0.05%x,- 0.03%x, - 0.1%c, + 0.09%c; + 0.09%x, + 0.84
LM: -0.18%,- 0.1%x;+ 0.07%x,- 0.16%5- 0.16%x5+ 0.1%x, + 0.85

LM,: -0.03%x,- 0.03%x,- 0.11%c,+ 0.06%, + 0.59

LM;: -0.19%c,- 0.17%c; + 0.55

Fig. 14. An example of induced tree for mGMT for the Kinman dataset.

For first group, the Friedman test showed significant sta-
tistical differences between algorithms (P value=0.0109, F-
statistic=10.62); however, a Dunn’s multiple comparison test did
not show any significant differences in rank sum, which may be
caused by a small sample size (only four values for five algorithms).
For the second group, a Friedman test also showed significant
statistical differences between algorithms (P value<0.0001, F-
statistic = 194.6). A corresponding Dunn’s multiple comparison test
showed significant differences in rank sum between mGMT and all
algorithms except uGMT. It should also be noted that mGMT man-
aged to induce much smaller trees, often by an order of magnitude
smaller than the tested counterparts. A relatively higher number of
leaves for the mGMT inducer for the 3DSin and Fried datasets can
be explained by high non-linearity in the datasets. As the mGMT
applies multivariate linear regression functions in the leaves, it
requires more splits to fit to the non-linear datasets characteristics.

The cost of finding possibly new hidden regularities is the tree
induction time. It is well known that the EAs in comparison to
the greedy solutions are slower, and the mGMT is no exception.
The efficiency comparison between mGMT and both tested greedy
inducers showed that the proposed solution is significantly slower
(verified with Friedman test, P value <0.0001) than both algo-
rithms: M5 and RT. The mGMT tree induction time was smaller
to that of the GMT solution [12] (Table 3) and took, depending on
the dataset, from several seconds to a few minutes on a regular
PC computer. However, the process of evolutionary induction is
progressive; therefore, intermediate solutions from pre-maturely
aborted runs may also yield high-quality results. In addition, EAs
are naturally prone to parallelism; therefore, the efficiency problem
can be partially mitigated.

In Fig. 14, we present one of the trees induced by mGMT for
the Kinman dataset. For this particular real-life dataset, all induced
trees contained oblique and univariate splits and almost always
multivariate linear regressions in the leaves. This may suggest that
this mixed representation is the most suitable one for this particular

dataset and may reveal new relationships and information hidden
in the data. The output tree is much smaller and has the small-
est prediction error, especially when compared to the results of
state-of-the-art solutions like CART and M5. However, it should be
noticed that in case of the mixed, oblique or model trees the size
of the tree is not an accurate reflection of its complexity. The trees
with more advanced tree representation are usually smaller which
is why the M5 algorithm induces much smaller trees than CART.
Therefore, even very small tree induced by the mGMT but with
complex oblique splits and models in the leaves can be less com-
prehensible than, for example, larger univariate regression tree. In
an extreme scenario, the proposed solution can be as complex as
trees induced by the oGMT system or as simple as ones induced
by the uGRT algorithm. However, mGMT is capable of adjusting
the representation of the nodes to automatically fit to the analyzed
which is not possible in the competitive solutions which have only
homogeneous tree representation. Although, the trade-off between
the comprehensibility and prediction performance in mGMT still
exits, it can be easily adjusted to the user preferences due to the
parameters in the fitness function of the mGMT algorithm.

4.3. Overall prediction performance of mGMT

In the last step of the experiments, we compared the predic-
tion performance of the mGMT inducer with that of other popular
systems on multiple datasets. Tests were performed with WEKA
software [19] using the collection of benchmark regression datasets
provided by Louis Torgo [45]. From this package of 30 datasets
(available on the WEKA page), we selected only those with a min-
imum of 1000 instances, described in Table 5. We decided that
datasets with, for example, 43 instances and two variables are not
the best for validation. The datasets have been processed by WEKA'’s
supervised NominalToBinary filter that converts nominal attributes
into binary numeric attributes and the unsupervised ReplaceMiss-
ingValues filter that replaces missing values with the attributes’

Table 5

Dataset characteristics: name, numeric attributes number (Num), nominal attributes number (Nom), and the number of instances.
ID Name Num Nom Instances ID Name Num Nom Instances
1 2dplanes 10 0 40,768 11 elevators 18 0 8752
2 abalone 7 1 4177 12 fried 10 0 40,768
3 ailerons 40 0 13,750 13 house 16H 16 0 22,784
4 bank32nh 32 0 8192 14 house 8L 8 0 22,784
5 bank8FM 8 0 8192 15 kin8nm 8 0 8192
6 cal housing 8 0 20,640 16 mv 7 3 40,768
7 cpu act 21 0 8192 17 pol 48 0 15,000
8 cpu small 12 0 8192 18 puma32H 32 0 8192
9 delta ailerons 5 0 7129 19 puma8NH 8 0 8192
10 delta elevators 6 0 7129
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Table 6

Comparison results of RMSE for tested systems. The standard deviation is shown for nondeterministic methods. Occasional catastrophic failures of systems for particular
datasets (with a minimum 2 x higher RMSE value in comparison to the score achieved by the best algorithm for the dataset) are bolded.

ID MGMT UGRT UGMT oGRT oGMT LR RT M5 SMO AR BG NN
0.996 0.998 0.996 1.059 1.01 2378 1.045 0.996 2.380 2474 1.04 1.481
1 +7E-3 £0.01 £0.01 £0.01 +0.02 - - - - - - -
2220 2357 2218 2321 2283 2.186 2299 2.131 2206 2365 2.145 2244
2 +6E-3 +£0.07 +1E-3 +£0.02 +4E-3
1.6E-4 2.0E-4 1.6E-4 22E-4 1.7E-4 1.7E-4 2.0E-4 1.6E-4 1.7E-4 2.2E-4 1.8E-4 2.6E-4
3 +1E-7 +3E-6 +1E-6 £2E-5 +3E-7
0.083 0.099 0.084 0.087 0.084 0.083 0.094 0.082 0.089 0.092 0.087 0.142
4 +1E-4 +1E-3 +1E-3 +7E-4 +2E-4 - - - - - - -
0.029 0.040 0.030 0.036 0.030 0.038 0.040 0.030 0.038 0.057 0.033 0.033
B +2E-4 +4E-4 +2E-4 £6E-4 +5E-4 - - - - - - -
7.4E4 9.1E4 8.5E4 8.5E4 7.2E4 7.5E4 9.7E4 13.3E4 7.4E4 8.8E4 7.8E4 7.1E4
6 +6E3 +4E3 +7E3 +1E4 +7E3 - - - - - - -
2.654 3.420 2.643 3.594 2.566 9.288 3294 2655 10.686 4145 2794 4041
7 +0.06 £0.06 +0.06 £021 +0.08 - - - - - - -
3263 3811 3276 3.947 3.439 9.478 3.945 3284 10.772 4655 3220 3569
8 +0.08 £0.02 +0.11 +0.13 +0.50 - - - - - - -
1.7E-4 1.8E-4 1.6E-4 1.8E-4 1.7E-4 1.7E-4 1.8E-4 1.7E-4 1.7E-4 1.8E-4 1.7E-4 1.8E-4
9 +2E-6 +4E-6 +3E-6 +2E-6 +1E-6 - - - - - - -
1.4E-3 1.4E-3 1.4E-3 1.4E-3 1.4E-3 1.4E-3 1.4E-3 1.4E-3 1.4E-3 1.5E-3 1.4E-3 1.4E-3
10 +1E-6 L7E-6 +1E-6 +1E-6 +1E-6 - - - - - - -
23E-3 3.8E-3 23E-3 48E-3 2.5E-3 2.8E-3 3.9E-3 25E-3 2.9E-3 47E-3 32E-3 22E-3
11 +2E-5 £9E-5 +2E-5 +7E-4 +1E-4 - - - - - - -
1.067 2.007 1.056 2.049 1.551 2.638 1.920 1.554 2.662 2.497 1.496 1.534
12 +0.01 +£0.05 +2F+3 +£0.08 +0.05 - - - - - - -
3.9E4 45E4 4.1E4 42E4 3.9E4 4.4E4 3.9E4 3.6E4 46E4 4.1E4 3.4E4 42E4
13 +4E3 +1E3 +4E3 +2E3 +1E3 - - - - - - -
33E4 3.7E4 3.6E4 3.6E4 3.4E4 41E4 3.5E4 32E4 46E4 3.5E4 3.1E4 3.4E4
14 +1E3 +1E3 +4E3 +7E2 +9E2 - - - - - - -
0.141 0.187 0.151 0.158 0.141 0204 0.198 0.176 0208 0212 0.165 0.156
15 +6E-3 +2E-3 +4E-3 +4E-3 +5E-3 - - - - - - -
0.088 0.380 0411 1177 0.076 4493 0.348 0.205 5316 4.806 0.197 0.254
16 £0.10 £0.10 +0.69 +1.85 +0.08 - - - - - - -
7.080 7.360 11.05 8.618 13.80 30.52 8.965 6.870 30.71 24.31 6.377 1452
17 4038 +£030 45.42 +0.71 +5.66 - - - - - - -
0.007 0.009 0.007 0.021 0.021 0.027 0.009 0.008 0.027 0.027 0.008 0.040
18 +1E-4 +8E-5 +6E-5 +8E-3 +9E-4 - - - - - - -
3202 3412 3208 3372 3232 4478 3.424 3216 4558 4375 3266 4128
19 40.02 £0.03 4001 £0.02 +0.03 - - - - - - -

corresponding mean value. The first 50% of each dataset constitute
the training set and the rest of the data constitute the testing set.

In the comparison, we tested previously compared algorithms,
mGMT, uGRT, mGRT, oGRT, oGMT, RT, and M5 and some state-of-
the-art:

e Linear (Ridge) Regression (LR);

e SVM SMOreg (SMO) - algorithm that implements the support
vector machine for regression [42];

e AdditiveRegression (AR) — meta predictor that enhances the per-
formance of a regression base classifier;

¢ Bagging (BG) - ensembles of regression trees;

e MultilayerPerceptron (NN) - a feedforward artificial neural net-
work with backpropagation.

All algorithms for all datasets were performed with the default
set of parameters.

Comparisonresults of the prediction errors (RMSE) for the tested
systems are shown in Table 6. As the training and testing sets were
specified for all datasets, the standard deviation is shown only for

evolutionary tree inducers. It can be observed that mGMT is the
most stable one, with no occasional catastrophic failures (bolded
results), which is in contrast to all other algorithms. In most of
the tested datasets, the proposed solution managed to achieve the
smallest (or almost the smallest) prediction error. The results in
Table 6 also show that the prediction performance between mGMT
and uGMT is similar for many datasets. However, for some datasets,
for example, cal housing (6) and mv (16), to reduce RMSE the mGMT
system induced trees with more oblique splits and model leaves
like oGMT. For other datasets, for example, pol (17), mGMT induced
trees similar to uGRT. The benefits of allowing the tree (and node)
representation to self-adapt to the currently analyzed data can be
seen for other tested datasets.

A statistical analysis performed using the Friedman test showed
that there are significant statistical differences between the
algorithms (significance level equal to 0.05, P value<0.0001, F-
statistic=110.7). Table 7 shows the results of a Dunn’s multiple
comparison test between mGMT and the tested algorithms based
on the difference in rank sum. We can observe that mGMT managed
to significantly outperform 7 of 11 tested solutions. We believe this

Table 7

Results of Dunn’s multiple comparison test between mGMT and the rest of the systems.
Algorithm uGRT uGMT oGRT oGMT LR RT M5 SMO AR BG NN
Significant? Yes No Yes No Yes Yes No Yes Yes No Yes
Pvalue <0.0001 - <0.0001 - <0.0001 <0.0001 - <0.0001 <0.0001 - <0.001
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is a good result, especially considering that the Dunn’s test is the
most conservative option (less likely to find a significant difference)
among all multiple comparison procedures [9,43].

5. Conclusion and future works

This article focuses on different representations of the deci-
sion tree applied to regression problems. We have validated five
evolutionary tree inducers with different tree representations and
showed their advantages and disadvantages. We also proposed a
unified framework for the global induction of mixed trees that
may have both univariate and oblique tests in internal nodes and
regression planes and models in leaves. Embedding representa-
tion modification in different variants of the mutation operators
allowed switching the node representation during the evolution-
ary tree induction. Modification of the BIC fitness function allowed
minimization of the tree error and the tree complexity, including
the tree size, number of attributes in the internal nodes, and the
complexity of regression models in the leaves.

Experimental validation shows that the tree representation
plays an important role in the final prediction model. The proposed
solution not only extends the search space of possible solutions for
the tree inducers with limited tree representations like uGRT but
also significantly improves the speed of convergence algorithms
with advanced representations like oGMT. In contrast to the rest
of the homogeneous algorithms, the mGMT solution is capable of
self-adapting to the problem that is being solved and choosing the
most suitable representation for a particular tree node. The over-
all performance of mGMT in comparison to other state-of-the-art

1.5, x<l1
PR
YHLXRI=Y 05 y>21<x<4

1, x1<2; 1<x<4

solutions showed that its prediction performance is highly com-
petitive.

We see many promising directions for future research. In
particular, we are currently working on improving the algo-
rithm efficiency, especially for large datasets, with OpenMP+MPI
and GPGPU parallelization. We are also considering including
the non-linear regression models in the leaves and extending
multi-objective optimization to the Pareto dominance approach.
Additional adaptive schemes that might cover, for example,
self-adaptive parameters or variants of genetic operators are also
considered.
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Appendix.

The appendix includes examples of different variants of two
artificial datasets: armchair and noisy.

Armchair dataset

The armchair dataset has uniform distribution, and its variants
are as follows (Figs. 15-20):

Fig. 15. Armchair Univariate Regression (AUR) dataset.

2% x — 1.5%x +2,
1.5%x —1.5%x— 1,
3.5%x) —2.5%x + 10,
0.5%x) —25%x+ 1.5,

y(x1,x2) =

Xy — x> 2

Xy —x <=2
y(xi,x2) = >

— N

x <1
X, >4
xp =22, 1<x<4
X1 <2, 1<x<4

Xo+x >6;-2<x—x; <2
X+ X <6;-2<x—x1 <2

Fig. 17. Armchair Oblique Regression (AOR) dataset.

dxx;—1.5%x+2,
3xx;—15%xx—1,

Y, x2) = 35%x; +1.5%x, -3,

Xy —x1>2
Xy —xp £ -2

Xo+x >6;-2<x—x; <2 K
05%x; —25%xx+ 1.5, x+x<6,-2<x,—x <2 ‘

TS

Al
L il

A

Fig. 18. Armchair Oblique Model (AOM) dataset.

-2,

3ex;—15%xx -1,
Y m) =y 5

0.5%x; —2.5%x, + 1.5,

X >4
x <1
X +x>551<x>4
X1+x <55 1<x>4

Fig. 19. Armchair Mix 1 - all 4 types of nodes (AMix1) dataset.
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1, X2 —x; >2
Yor, ) = 3xx;—1.5%x -8, Xp—x; < -2 MIIW*W‘
’ 4, X >3 2<xp-x <2 ‘ 2

1

Fig. 20. Armchair Mix 2 - all 4 types of nodes (AMix2) dataset.

05%x; —25%xx—-15, x<3; -2<x-x <2

¢ random distribution centered at (x; =0.5, x; =1.5);

Noisy dataset
e chi squared distribution centered at (x1 =3, x =3).

The noisy dataset has three different data distributions (one for

each region):
& Noise for each set equals +10% of the y(xq, x,) value. Datasets

e normal distribution centered at (x; =2, x, =0); variants are as follows (Figs. 21-26):

05, x<l
y(x1,x) =1 0.6, xn>1; x <15

Fig. 21. Noisy Univariate Regression (NUR) dataset.

0.4 % xp, X <1
y(x,x) =9 033 %x +0.67x2-031, x>1;x <15
—0.12 % x; + 0.6 * x5, xn>1; x =15

Fig. 22. Noisy Univariate Model (NUM) dataset.

0.5, “3xx;+4xx <0
y(x1,x2) =12 055, Bsx;+4xx20; x; +2%x,<5
0.60, -3sx;+4xx>0; x,+2%x>5

Fig. 23. Noisy Oblique Regressionl (NOR) dataset.

0.4 xo, —3xx+4,2<0
V(xp,x0) =4 033 % x1+0.67%x2-031, Bxx;+4%x20; x1+2%x<5
—0.12 % x; + 0.6 * xp, “Buax;+4xx20; X1 +2%x>5

Fig. 24. Noisy Oblique Model (NOM) dataset.
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0.75,
y(x1,x2) =4 0.33 % x; +0.67 *x2 — 0.31,
—0.12 % x; + 0.6 = xp,

X2<1
X221 xp+2%x<5
X221 x1+2%x>5

S

Fig. 25. Noisy Mix 1 - all 4 types of nodes (NMix1) dataset.

0.4 x X2,
Y, x2) =4 0335 x; +0.67 % x2 — 0.31,

0.75,

“Bxx;+4xx<0
“Bxx;+4xx>0; x; <15
—Bxx;+4xx>0; x; > 1.5

Fig. 26. Noisy Mix 2 - all 4 types of nodes (NMix2) dataset.
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