Preprint of an article accepted for publication in Proc. Amer. Math. Soc. [2012]

ON IRREDUCIBLE MODULES OVER q-SKEW POLYNOMIAL RINGS AND SMASH PRODUCTS

PIOTR GRZESZCZUK

ABSTRACT. Let M be an irreducible left module over a q-skew polynomial ring $R[x; \sigma, \delta]$. We give sufficient conditions for the complete reducibility of M considered as a module over the coefficient ring R. We apply it to irreducible modules over smash product R#H, where H is a Hopf algebra generated by skew primitive elements.

1. INTRODUCTION

For a given extension $R \subseteq S$ of associative rings (with the same unity), it is natural to ask whether (or when) irreducible left S-modules are completely reducible as R-modules. This question has a positive answer for several classes of "finite type" extensions; for example

- (i) finite normalizing extensions $R \subseteq \sum_{i=1}^{n} Rs_i$ ([2]),
- (ii) fixed rings of a finite group actions $R^G \subseteq R$, with $|G|^{-1} \in R$ ([8]),
- (iii) rings graded by finite groups $R_1 \subseteq \bigoplus_{q \in G} R_q$ ([4]).

In this paper we study some extensions of "infinite type". Namely, we consider modules over q-skew polynomial rings. We show that, under certain conditions, for a given left $R[x;\sigma,\delta]$ -module M its socle $Soc(_RM)$ over R is also a module over the ring $R[x;\sigma,\delta]$. Our conditions imply in particular, that if q is not a root of 1, then

- 1. finite dimensional irreducible $R[x; \sigma, \delta]$ -modules are completely reducible over R;
- 2. if R is left socular (e.g., left artinian or right perfect), then irreducible left $R[x; \sigma, \delta]$ modules are completely reducible over R.

As a consequence of our results on modules over q-skew polynomial rings, we obtain a description of certain modules over smash products R # H, where H is a Hopf algebra generated by skew primitive elements. Namely, we show that if H is a character Hopf algebra (see [5]) over the field k of characteristic 0, and $\chi^h(g)$ is not an n^{th} primitive root of 1 (n > 1) for any character skew g-primitive element $h \in H$, then

- 3. every finite dimensional irreducible left R#H-module is completely reducible as a left R-module;
- 4. if R is left socular, then irreducible left R#H-modules are completely reducible as left R-modules. Thus $\mathcal{J}(R) \subseteq \mathcal{J}(R#H)$, where \mathcal{J} is the Jacobson radical.

²⁰¹⁰ Mathematics Subject Classification. 16N20, 16S36, 16W25, 16S40.

Key words and phrases. Irreducible module, skew polynomial ring, skew derivation.

The author was supported in part by Grant MNiSW nr N N201 268435 and by the grant S/WI/1/2011 of Białystok University of Technology.

On the other hand we should also point out that in the case where H is finite dimensional and pointed, there is a strong relationship between the Jacobson radicals of R and the crossed product R # H. Namely, it is proved in [7] that $\mathcal{J}(R \# H)^{\dim_k H} \subseteq \mathcal{J}(R) \cdot (R \# H)$.

We will now introduce the terminology and notation that will be used throughout the paper. Let R be an associative ring and σ be an automorphism of R. Then the additive map $\delta \colon R \to R$ is a σ -derivation if

$$\delta(ab) = \delta(a)b + \sigma(a)\delta(b)$$

for all $a, b \in R$. Suppose that q is a nonzero central (σ, δ) -constant in R, i.e., $\sigma(q) = q$ and $\delta(q) = 0$. If $\delta \sigma = q \sigma \delta$, then δ is called a q-skew σ -derivation. If in addition R is a k-algebra, we assume that $q \in k^{\times}$. The following q-Leibniz Rules hold in R and $R[x; \sigma, \delta]$:

$$\delta(ab) = \sum_{i=0}^{n} \binom{n}{i}_{q} \sigma^{n-i} \delta^{i}(a) \delta^{n-i}(b) \text{ and } x^{n}a = \sum_{i=1}^{n} \binom{n}{i}_{q} \sigma^{n-i} \delta^{i}(a) x^{n-i}$$

for all $a, b \in R$ and $n \ge 0$. The Gaussian q-binomial coefficient $\binom{n}{i}_{q}$ is defined as the evaluation at t = q of the polynomial function

(1)
$$\binom{n}{i}_{t} = \frac{(t^{n}-1)(t^{n-1}-1)\dots(t^{n-i+1}-1)}{(t^{i}-1)(t^{i-1}-1)\dots(t-1)}.$$

We will use the following q-Pascal identity:

$$\binom{n}{i}_{q} = \binom{n-1}{i}_{q} + q^{n-i}\binom{n-1}{i-1}_{q} = \binom{n-1}{i-1}_{q} + q^{i}\binom{n-1}{i}_{q}$$

for n > i > 0 (cf.[3]).

We will say that the ring R has q-characteristic zero if $1 + q + \cdots + q^m$ is invertible in R, for any integer $m \ge 1$. If in addition R is a k-algebra, this means that either q is not a root of unity, or q = 1 and char k = 0.

If $r \in R$, then a left *R*-module *M* is said to be *r*-torsion free if $rm \neq 0$ for all nonzero $m \in M$. If for any $m \in M$ there exists an integer n = n(m) such that $r^n m = 0$, then M is called an *r*-torsion module.

A submodule E of an R-module M is said to be essential if $E \cap X \neq 0$ for any nonzero submodule $X \subseteq M$. It is well known that the intersection of all essential submodules of an *R*-module M is equal to the sum of all irreducible submodules of M and is called the socle of M; denoted by Soc(M). Finally, Sing(M) will be the singular submodule of M, that is $\operatorname{Sing}(M) = \{m \in M \mid \operatorname{ann}_R(m) \text{ is essential in } _RR\}.$

2. m-sequences and essential submodules

Let $R[x;\sigma,\delta]$ be a q-skew polynomial ring and M a left $R[x;\sigma,\delta]$ -module. Let E be an essential R-submodule of M and $0 \neq m \in E$. By an m-sequence we mean a sequence $\mathbf{r} = \{r_n\}_{n \ge 0}$ of elements of R satisfying the following properties:

 $1^{\circ} \quad \sigma^{n}(r_{n})x^{n}m \in E \text{ for all } n \geq 0 \text{ and } \sigma^{s}(r_{s})x^{s}m \neq 0 \text{ for some } s;$ $2^{\circ} \quad \text{if } \sigma^{n+1}(r_{n})x^{n+1}m \in E, \text{ then } r_{n+1} = r_{n};$ $3^{\circ} \quad \text{if } \sigma^{n+1}(r_{n})x^{n+1}m \notin E, \text{ then } r_{n+1} \in Rr_{n} \text{ and } \sigma^{n+1}(r_{n+1})x^{n+1}m \in E \setminus \{0\}.$

The smallest integer s such that $\sigma^s(r_s)x^sm\neq 0$ we denote by deg **r** and call the degree of r.

Lemma 1. If $a \in R$ and $\sigma^s(a)x^s m \neq 0$ for some $s \ge 1$, then there exists an m-sequence $\mathbf{r} = \{r_n\}_{n \ge 0}$ such that $r_0 = a$ and deg $\mathbf{r} \le s$.

Proof. The sequence **r** we define inductively starting with $r_0 = \cdots = r_{i-1} = a$, where *i* is the smallest integer such that $\sigma^i(a)x^i m \notin E$. If such *i* does not exist, the constant sequence $\mathbf{r} = \{a\}$ satisfies the desired property. Next suppose that $j \ge i-1$ and r_0, \ldots, r_j are given. If $\sigma^{j+1}(r_j)x^{j+1}m \in E$, then we put $r_{j+1} = r_j$. If $\sigma^{j+1}(r_j)x^{j+1}m \notin E$, then by essentiality of E there exists $0 \neq c = \sigma^{j+1}(r') \in R$ such that

$$0 \neq c\sigma^{j+1}(r_j)x^{j+1}m = \sigma^{j+1}(r'r_j)x^{j+1}m \in E.$$

In this situation we put $r_{j+1} = r'r_j$. Clearly the sequence **r** satisfies conditions $1^\circ - 3^\circ$, and from the construction it follows immediately that deg $\mathbf{r} \leq s$. \square

An *m*-sequence $\mathbf{r} = \{r_n\}_{n \ge 0}$ is said to be weak if $r_j = r_{j+1}$ for some $j \ge \deg \mathbf{r}$. If $r_j \neq r_{j+1}$ for all $j \ge \deg \mathbf{r}$, we call \mathbf{r} a strict *m*-sequence. Note that if \mathbf{r} is strict and $j \ge \deg \mathbf{r}$, then $\sigma^j(r_j)x^jm \ne 0$. Indeed, if $\sigma^j(r_j)x^jm = 0$, then $\sigma^j(r_{j-1})x^jm$ must equal 0, and hence $r_i = r_{i-1}$.

Lemma 2. Suppose that every *m*-sequence in *R* is strict. Then

- (1) if $a \in R$ is such that $0 \neq ax^{l}m \in E$, then $\sigma(a)x^{l+1}m \notin E$;
- (2) if $\mathbf{r} = \{r_n\}_{n \ge 0}$ is an *m*-sequence and $l \ge \deg \mathbf{r}$, then $\sigma^j(r_l)x^jm = 0$ for all j < l; (3) $\operatorname{ann}(x^{j+1}m) \subseteq \sigma^{-1}(\operatorname{ann}(x^jm))$ for all $j \ge 0$.

Proof. 1. Suppose that $0 \neq ax^{l}m \in E$ and $\sigma(a)x^{l+1}m \in E$. By Lemma 1 we can take an *m*-sequence **r** such that $r_0 = \sigma^{-l}(a)$ and deg **r** $\leq l$. Then $r_l = br_0 = b\sigma^{-l}(a)$, where $b \in R$. Notice that

$$\sigma^{l+1}(r_l)x^{l+1}m = \sigma^{l+1}(b)\sigma(a)x^{l+1}m \in E.$$

Hence $r_l = r_{l+1}$, contradicting our assumption that every *m*-sequence in *R* is strict.

2. Suppose that $\sigma^j(r_l)x^j m \neq 0$ for some j < l. From the definition of an *m*-sequence it follows that we can choose $a, b \in R$ such that $r_l = ar_j = br_{j+1}$. Then $0 \neq \sigma^j(r_l)x^jm = \sigma^j(a)\sigma^j(r_j)x^jm \in E$. On the other hand $\sigma^{j+1}(r_l)x^{j+1}m = \sigma^{j+1}(b)\sigma^{j+1}(r_{j+1})x^{j+1}m \in E$, which is impossible by 1.

3. Suppose $a \in R$ is such that $\sigma(a)x^{j+1}m = 0$. By 1. it follows that either $ax^{j}m = 0$ or $ax^jm \notin E$. If $ax^jm \notin E$, then there exists $r \in R$ such $0 \neq rax^jm \in E$. But in this situation $0 = \sigma(ra)x^{j+1}m \in E$. By 1. we obtain that $ax^{j}m$ must be equal to 0; thus $\operatorname{ann}(x^{j+1}m) \subseteq \sigma^{-1}(\operatorname{ann}(x^jm)).$

Corollary 3. If every m-sequence in R is strict, then R contains an infinite strictly descending chain of left ideals

$$\operatorname{ann}(m) \supseteq \sigma^{-1}(\operatorname{ann}(xm)) \supseteq \cdots \supseteq \sigma^{-l}(\operatorname{ann}(x^lm)) \supseteq \cdots$$

Proof. Lemma 2(3) implies that $\sigma^{-l}(\operatorname{ann}(x^{l}m)) \subseteq \sigma^{-(l-1)}(\operatorname{ann}(x^{l-1}m))$ for any l > 0. To see that the inclusion is strict, it is enough to consider an *m*-sequence **r** of degree $\leq l - 1$. Then Lemma 2(2) yields that $r_l \in \sigma^{-(l-1)}(\operatorname{ann}(x^{l-1}m))$, but clearly $r_l \notin \sigma^{-l}(\operatorname{ann}(x^lm))$. \Box

Lemma 4. If R contains a weak m-sequence, then there exists an element $r \in R$ and a nonnegative integer n such that

1. $0 \neq \sigma^n(r)x^n m \in E$ and $\sigma^{n+1}(r)x^{n+1}m \in E$; 2. $rm = \sigma(r)xm = \cdots = \sigma^{n-1}(r)x^{n-1} = 0$.

Proof. Let $l \ge \deg(\mathbf{r})$ be the smallest integer with respect to the equality $r_l = r_{l+1}$. Then $\sigma^l(r_l)x^lm \ne 0$. Otherwise, if $\sigma^l(r_l)x^lm = 0$, then from the definition it follows that $\sigma^l(r_{l-1})x^lm \in E$, and hence $r_{l-1} = r_l$. Next consider the smallest integer n with respect to $\sigma^n(r_l)x^nm \ne 0$. It is clear that $n \le l$. Note that if $j \le l$ then $r_l = s_jr_j$ for some $s_j \in R$. Thus $\sigma^j(r_l)x^jm = \sigma^j(s_j)\sigma^j(r_j)x^jm \in E$. Therefore $r = r_l$ and n satisfy the lemma.

Lemma 5. Let M be a q-torsion free left $R[x; \sigma, \delta]$ -module and $r \in R$, $m \in M$ be such that $rm = \sigma(r)xm = \cdots = \sigma^{n-1}(r)x^{n-1}m = 0.$

Then $\sigma^i \delta^j(r) x^i m = 0$ if $i + j \leq n - 1$, and $\sigma^n(r) x^n m = (-1)^n q^{\frac{n(n-1)}{2}} \delta^n(r) m$.

Proof. First we show that if i, j are nonnegative integers and $i+j \leq n-1$, then $\sigma^i \delta^j(r) x^i m = 0$.

Suppose that $\sigma^i \delta^j(r) x^i m \neq 0$ and take i, j such that the sum i + j is possibly minimal. Next take j possibly minimal. By assumption it follows that j > 0, so

$$\sigma^{i+1}\delta^{j-1}(r)x^{i+1}m = 0$$
 and $\sigma^i\delta^{j-1}(r)x^im = 0$.

Thus

$$\begin{split} 0 &= x(\sigma^i \delta^{j-1}(r) x^i m) = \sigma^{i+1} \delta^{j-1}(r) x^{i+1} m + \delta \sigma^i \delta^{j-1}(r) x^i m \\ &= q^i \sigma^i \delta^j(r) x^i m, \end{split}$$

a contradiction. The above implies, in particular, that if i + j = n - 1, then

$$0 = x(\sigma^i \delta^j(r) x^i m) = \sigma^{i+1} \delta^j(r) x^{i+1} m + q^i \sigma^i \delta^{j+1}(r) x^i m.$$

Hence

$$\sigma^{n}(r)x^{n}m = -q^{n-1}\sigma^{n-1}\delta(r)x^{n-1}m = q^{n-1}q^{n-2}\sigma^{n-2}\delta^{2}(r)x^{n-2}m$$
$$= \dots = (-1)^{n}q^{n-1}q^{n-2}\dots q\delta^{n}(r)m = (-1)^{n}q^{\frac{n(n-1)}{2}}\delta^{n}(r)m.$$

For $1 \leq i, j \leq n$ let $a_{ij} = {\binom{i+1}{j}}_q q^{(n-i)j}$, where ${\binom{i+1}{j}}_q$ denotes the Gaussian q-binomial coefficient (see Introduction (1)). Let

$$D_n = \det[a_{ij}] = \det \begin{bmatrix} \binom{2}{1}_q q^{n-1} & \binom{2}{2}_q q^{2(n-1)} & 0 & \dots & 0\\ \binom{3}{1}_q q^{n-2} & \binom{3}{2}_q q^{2(n-2)} & \binom{3}{3}_q q^{3(n-2)} & \dots & 0\\ \dots & \dots & \dots & \dots & \dots\\ \binom{n}{1}_q q & \binom{n}{2}_q q^2 & \binom{n}{3}_q q^3 & \dots & \binom{n}{n}_q q^n\\ \binom{n+1}{1}_q & \binom{n+1}{2}_q & \binom{n+1}{3}_q & \dots & \binom{n+1}{n}_q \end{bmatrix}.$$

Lemma 6. $D_n = q^{\frac{n^3 - n}{6}} (1 + q + \dots + q^n).$

Proof. Notice that using q-Pascal identity,

$$a_{i+1,j} = \binom{i+2}{j}_q q^{(n-i-1)j} = \binom{i+1}{j-1}_q q^{(n-i-1)j} + \binom{i+1}{j}_q q^j q^{(n-i-1)j}$$
$$= \binom{i+1}{j-1}_q q^{(n-i-1)j} + a_{ij}.$$

The above implies that

$$D_{n} = \det \begin{bmatrix} \binom{2}{1}_{q}q^{n-1} & \binom{2}{2}_{q}q^{2(n-1)} & 0 & \dots & 0\\ \binom{2}{0}_{q}q^{n-2} & \binom{2}{1}_{q}q^{2(n-2)} & \binom{2}{2}_{q}q^{3(n-2)} & \dots & 0\\ \dots & \dots & \dots & \dots & \dots\\ \binom{n-1}{0}_{q}q & \binom{n-1}{1}_{q}q^{2} & \binom{n-1}{2}_{q}q^{3} & \dots & \binom{n-1}{n-1}_{q}q^{n}\\ \binom{n}{0}_{q} & \binom{n}{1}_{q} & \binom{n}{2}_{q} & \dots & \binom{n}{n-1}_{q} \end{bmatrix}$$
$$= \binom{2}{1}_{q}q^{n-1}q^{n-2}\dots q \cdot D_{n-1} - \binom{2}{2}_{q}q^{2(n-1)}W_{n-1},$$

where

$$W_{n-1} = \det \begin{bmatrix} q^{n-2} & \binom{2}{2}_q q^{3(n-2)} & 0 & \dots & 0\\ q^{n-3} & \binom{3}{2}_q q^{3(n-3)} & \binom{3}{3}_q q^{4(n-3)} & \dots & 0\\ \dots & \dots & \dots & \dots & \dots \\ q & \binom{n-1}{2}_q q^3 & \binom{n-1}{3}_q q^4 & \dots & \binom{n-1}{n-1}_q q^n\\ 1 & \binom{n}{2}_q & \binom{n}{3}_q & \dots & \binom{n}{n-1}_q \end{bmatrix}.$$

Applying again the q-Pascal identity, one obtains immediately that

$$W_{n-1} = \det \begin{bmatrix} q^{n-2} & \binom{2}{2}_q q^{3(n-2)} & 0 & \dots & 0\\ 0 & \binom{2}{1}_q q^{3(n-3)} & \binom{2}{2}_q q^{4(n-3)} & \dots & 0\\ \dots & \dots & \dots & \dots & \dots\\ 0 & \binom{n-2}{1}_q q^3 & \binom{n-2}{2}_q q^4 & \dots & \binom{n-2}{n-2}_q q^n\\ 0 & \binom{n-1}{1}_q & \binom{n-1}{2}_q & \dots & \binom{n-1}{n-2}_q \end{bmatrix}$$
$$= q^{n-2} q^{2(n-3)} q^{2(n-4)} \dots q^2 \cdot D_{n-2} = q^{n^2-4n+4} D_{n-2}.$$

Thus

$$D_n = (1+q)q^{\frac{n(n-1)}{2}}D_{n-1} - q^{n^2 - 2n+2}D_{n-2}$$

with $D_1 = 1 + q$ and $D_2 = q(1 + q + q^2)$. The lemma follows now by an easy induction. \Box

Proposition 7. Let M be a left $R[x; \sigma, \delta]$ -module which is D_n -torsion free for all $n \ge 1$. Let E be an essential R-submodule of M such that for every $m \in E$, the ring R contains a weak m-sequence. Then

$$E \cap x^{-1}E = \{m \in E \mid xm \in E\}$$

is also essential as an R-submodule.

Proof. Notice that if $e \in E$ and $xe \in E$, then for every $r \in R$

$$xre = \sigma(r)xe + \delta(r)e \in E.$$

Thus $E \cap x^{-1}E$ is an *R*-submodule of *M*.

Suppose that $E \cap x^{-1}E$ is not essential. Then there exists a nonzero element $m \in E$ such that $(E \cap x^{-1}E) \cap Rm = 0$. Since R contains a weak m-sequence, by Lemma 4 we can take $r \in R$ and $n \ge 0$ such that

$$rm = \sigma(r)xm = \dots = \sigma^{n-1}(r)x^{n-1}m = 0,$$

$$0 \neq \sigma^n(r)x^nm \in E \text{ and } \sigma^{n+1}(r)x^{n+1}m \in E.$$

For $1 \leq i, j \leq n$, let $a_{ij} = {i+1 \choose j}_q q^{(n-i)j}$ and $x_j = \sigma^{n+1-j} \delta^j(r) x^{n+1-j} m$. Applying the *q*-Leibniz rule for i = 1, 2, ..., n-1, we obtain

$$0 = x^{i+1}(\sigma^{n-i}(r)x^{n-i}m) = \sum_{j=0}^{i+1} \binom{i+1}{j}_q \sigma^{i+1-j}\delta^j \sigma^{n-i}(r)x^{n+1-j}m$$
$$= \sum_{j=0}^{i+1} \binom{i+1}{j}_q q^{(n-i)j}\sigma^{n+1-j}\delta^j(r)x^{n+1-j}m$$
$$= \sigma^{n+1}(r)x^{n+1}m + \sum_{j=1}^{i+1} a_{ij}x_j.$$

Thus $\sum_{j=1}^{i+1} a_{ij}x_j = -\sigma^{n+1}(r)x^{n+1}m \in E$. Moreover, for i = n we have

$$0 = x^{n+1}rm = \sigma^{n+1}(r)x^{n+1}m + \sum_{j=1}^{n} a_{nj}x_j + \delta^{n+1}(r)m,$$

so $\sum_{j=1}^{n} a_{nj}x_j \in E$. Now it is clear that for any j = 1, 2, ..., n the element $D_n x_j \in E$, where D_n is the determinant from Lemma 6. We note that $D_n x_1 = D_n \sigma^n \delta(r) x^n m \in E$, so

$$\begin{aligned} x(D_n\sigma^n(r)x^nm) &= D_n\sigma^{n+1}(r)x^{n+1}m + D_n\delta\sigma^n(r)x^nm \\ &= D_n\sigma^{n+1}(r)x^{n+1}m + D_nq^n\sigma^n\delta(r)x^nm \in E. \end{aligned}$$

On the other hand, by Lemma 5, $\sigma^n(r)x^nm = (-1)^n q^{\frac{n(n-1)}{2}}\delta^n(r)m$ and M is D_n -torsion free; so

$$0 \neq D_n \sigma^n(r) x^n m \in (E \cap x^{-1}E) \cap Rm,$$

a contradiction. Therefore $E \cap x^{-1}E$ is an essential submodule of M.

Corollary 8. Let M be a left $R[x; \sigma, \delta]$ -module which is D_n -torsion free for all $n \ge 1$. Suppose that for every essential R-submodule E of M and $0 \ne m \in E$, the ring R contains a weak m-sequence. Then $Soc(_RM)$ is an $R[x; \sigma, \delta]$ -module. In particular, if M is simple as an $R[x; \sigma, \delta]$ -module, then either $Soc(_RM) = 0$ or $_RM$ is completely reducible.

Proof. Let $m \in \text{Soc}(_RM)$. If E is an essential submodule of $_RM$, then by Proposition 7 $E \cap x^{-1}E$ is also essential, so $m \in E \cap x^{-1}E$. Hence $xm \in E$. Therefore $\text{Soc}(_RM)$ is an $R[x; \sigma, \delta]$ -module.

 $\mathbf{6}$

3. Applications

In this section we describe situations in which our condition on the existence of weak m-sequences is automatically satisfied.

Let Λ be a well ordered set of ordinal numbers with the least element 0. For a ring R one can define a chain of ideals $\{S_{\alpha}\}_{\alpha \in \Lambda}$ as follows: $S_0 = 0$; if $\alpha \in \Lambda$, then $S_{\alpha+1}/S_{\alpha} = \operatorname{Soc}(R/S_{\alpha})$ - the left socle of R/S_{α} . If $\beta \in \Lambda$ is a limit number, set $S_{\beta} = \bigcup_{\alpha < \beta} S_{\alpha}$. Recall that a ring R is

said to be left *socular* (cf. [1]) if every nonzero left *R*-module contains a simple submodule. If *R* is left socular, the set Λ can be chosen such that $R = S_{\alpha}$ for some $\alpha \in \Lambda$. Note that the class of socular rings contains left artinian rings and right perfect rings.

If A is a k-algebra, then A-module M is *locally finite dimensional* if every finitely generated submodule of M is finite dimensional.

Proposition 9. Let M be a left $R[x; \sigma, \delta]$ -module and E its essential R-submodule. Suppose that one of the following conditions is fulfilled

- 1. *R* is left socular;
- 2. R is a left noetherian k-algebra and M is locally finite dimensional as k[x]-module; 3. dim_k $M < \infty$;

4. there exists an integer N such that $d^{N+1}(r) \in \sum_{j=0}^{N} Rd^{j}(r)$ for all $r \in R$;

- 5. M is x-torsion, i.e., for any $m \in M$ there exists n = n(m) such that $x^n m = 0$;
- 6. R is a k-algebra, $\sigma = id_R$ and M is locally finite dimensional as k[x]-module.

Then for any nonzero $m \in E$ the ring R contains a weak m-sequence.

Proof. 1. Suppose that R is left socular. Let γ be the smallest ordinal such that S_{γ} contains an *m*-sequence $\{r_l\}_{l\geq 0}$. It is clear that γ is not a limit ordinal. Note that if $a \in S_{\gamma-1}$, then $\sigma^l(a)x^lm = 0$. Otherwise, we have an *m*-sequence $\{r'_l\}_{l\geq 0}$ with $r'_0 = a \in S_{\gamma-1}$. Since $Rr'_l \supseteq Rr'_{l+1}$, one obtains that $r'_l \in S_{\gamma-1}$ for all l. This contradicts minimality of γ .

Let $\varphi \colon R \to R/S_{\gamma-1}$ be the canonical homomorphism. Since $Rr_0 \supseteq Rr_1 \supseteq \cdots \supseteq Rr_l \supseteq \cdots$, we have a chain

$$\varphi(Rr_0) \supseteq \varphi(Rr_1) \supseteq \cdots \supseteq \varphi(Rr_l) \supseteq \ldots$$

of cyclic submodules of a semisimple module $S_{\gamma}/S_{\gamma-1}$. Since $\varphi(Rr_0)$ is contained in a finite direct sum of simple modules, this chain terminates. On the other hand, if $\varphi(Rr_l) = \varphi(Rr_{l+1})$, then there exist $r' \in R$ and $a \in S_{\gamma-1}$ such that $r_l = r'r_{l+1} + a$. By the above, $\sigma^{l+1}(a)x^{l+1}m = 0$, so

$$\sigma^{l+1}(r_l)x^{l+1}m = \sigma^{l+1}(r')\sigma^{l+1}(r_{l+1})x^{l+1}m \in E.$$

From the definition of an *m*-sequence it follows that $r_l = r_{l+1}$. Therefore the sequence **r** is weak.

2. Suppose that every m-sequence in R is strict. Corollary 3 tells us that the chain of left ideals

 $\operatorname{ann}(m) \supseteq \sigma^{-1}(\operatorname{ann}(xm)) \supseteq \cdots \supseteq \sigma^{-l}(\operatorname{ann}(x^lm)) \supseteq \cdots$

is strict. Since dim span_F($m, xm, x^2m, ...$) < ∞ , there exits an integer t such that $x^nm \in$ span_F($m, xm, x^2m, ..., x^tm$) for all $n \ge t$. Then

$$\operatorname{ann}(m, xm, x^2m, \dots, x^tm) \subseteq \operatorname{ann}(x^nm)$$

for $n \ge t$, and consequently $\bigcap_{l=0}^{\infty} \operatorname{ann}(x^l m) = \bigcap_{l=0}^{t} \operatorname{ann}(x^l m)$. Set $I = \bigcap_{l=0}^{t} \operatorname{ann}(x^l m)$ and take $r \in I$. For any $l \ge 1$, $r \in \operatorname{ann}(x^l m)$, so $\sigma^{-l}(r) \in \sigma^{-l}(\operatorname{ann}(x^l m)) \subset \sigma^{-(l-1)}(\operatorname{ann}(x^{l-1}m)),$

hence $\sigma^{-1}(r) \in \operatorname{ann}(x^{l-1}m)$. Then it follows that $\sigma^{-1}(I) \subseteq I$, and so $I \subseteq \sigma(I)$. The ring R is left noetherian, so the chain $I \subseteq \sigma(I) \subseteq \sigma^2(I) \ldots$ must stop. It implies immediately that $\sigma(I) = I$.

Next we claim that there exists an increasing sequence $\{f(n)\}_{n\geq 0}$ of nonnegative integers such that

$$\sigma\left(\bigcap_{l=0}^{f(n)}\operatorname{ann}(x^{l}m)\right) \nsubseteq \bigcap_{j>f(n)}\operatorname{ann}(x^{j}m).$$

We proceed by induction. By Corollary 3 we can put f(0) = 0. Assume $n \ge 0$ and let $a \in \bigcap_{l=0}^{f(n)} \operatorname{ann}(x^l m)$ be such that $\sigma(a)x^i m \ne 0$ for some i > f(n). Since I is σ -stable, $a \notin I$; so there exists s > f(n) such that $a \in \bigcap_{l=0}^{s-1} \operatorname{ann}(x^l m)$ and $ax^s m \ne 0$. Take $b \in R$ such that $0 \ne bax^s m \in E$. If every m-sequence is strict, then by Lemma 2(1), $\sigma(ba)x^{s+1}m \notin E$. Since E is essential, one can choose $c \in R$ such that $0 \ne \sigma(cba)x^{s+1}m \in E$. Again by Lemma 2(1), $cbax^s m = 0$, so $cba \in \bigcap_{l=0}^s \operatorname{ann}(x^l m)$. Since $\sigma(cba)x^{s+1}m \ne 0$, we have $\sigma\left(\bigcap_{l=0}^s \operatorname{ann}(x^l m)\right) \notin \bigcap_{j>s} \operatorname{ann}(x^j m)$. Thus it suffices to put f(n+1) = s. This proves the claim.

But now, if
$$f(n) > t$$
, then $I = \bigcap_{l=0}^{f(n)} \operatorname{ann}(x^l m) = \bigcap_{l=0}^{\infty} \operatorname{ann}(x^l m)$. Since I is σ -stable
 $\sigma\left(\bigcap_{l=0}^{f(n)} \operatorname{ann}(x^l m)\right) \subseteq \bigcap_{l=0}^{\infty} \operatorname{ann}(x^l m) \subseteq \bigcap_{j>f(n)} \operatorname{ann}(x^j m),$

contradicting the definition of f(n). Thus R contains a weak m-sequence.

3. Let $P = \operatorname{ann}(M)$. Then $\dim_F(R/P) < \infty$ and $P \subseteq \operatorname{ann}(x^l m)$ for any l. Note that the mapping $a + \operatorname{ann}(x^l m) \mapsto \sigma^{-l}(a) + \sigma^{-l}(\operatorname{ann}(x^l m))$ provides an isomorphism of vector spaces $R/\operatorname{ann}(x^l m) \approx R/\sigma^{-l}(\operatorname{ann}(x^l m))$. Thus

$$\dim_F R/\sigma^{-l}(\operatorname{ann}(x^l m)) \leq \dim_F(R/P).$$

From Corollary 3 it follows that R contains a weak m-sequence.

4. Let $\mathbf{r} = \{r_n\}_{n \ge 0}$ be a strict *m*-sequence with deg $\mathbf{r} \le N$. Then $\sigma^j(r_{N+1})x^jm = 0$ for all $j \le N$ and $\sigma^{N+1}(r_{N+1})x^{N+1}m \ne 0$. By Lemma 5,

$$0 = \sigma^{j}(r_{N+1})x^{j}m = (-1)^{j}q^{\frac{j(j-1)}{2}}\delta^{j}(r)m$$

for all $j \leq N$. Thus

$$\sigma^{N+1}(r_{N+1})x^{N+1}m = (-1)^{N+1}\frac{N(N+1)}{2}\delta^{N+1}(r_{N+1})m$$
$$\in \sum_{j=0}^{N} R\delta^{j}(r_{N+1})m = 0,$$

a contradiction. Consequently, in this situation, every m-sequence is weak.

5. It follows directly from Corollary 3.

6. Suppose $\sigma = \operatorname{id}_R$. If every *m*-sequence in *R* is strict, Corollary 3 says that the chain $\operatorname{ann}(m) \supseteq \operatorname{ann}(xm) \supseteq \cdots \supseteq \operatorname{ann}(x^mm) \supseteq \cdots$ is strict. But this contradicts our assumption that $\operatorname{span}_F\{m, xm, \ldots, x^lm \ldots\}$ is finite dimensional. \Box

Recall that an automorphism σ of the ring R is said to be of locally finite order if for every $r \in R$, there exists an integer n = n(r) > 0 such that $\sigma^n(r) = r$. If the ring R is left socular, then nonzero left R-modules contain simple submodules. Therefore Proposition 9 (1) and above Corollary 8 give us

Corollary 10. If R is a left socular ring of q-characteristic zero, then simple left $R[x; \sigma, \delta]$ modules are completely reducible as left R-modules. Thus the Jacobson radical $\mathcal{J}(R)$ is contained in the Jacobson radical $\mathcal{J}(R[x; \sigma, \delta])$. Moreover if the automorphism σ has locally finite order, then

$$\mathcal{J}(R[x;\sigma,\delta]) = \mathcal{J}(R)[x;\sigma,\delta].$$

Proof. Since simple $R[x; \sigma, \delta]$ -modules are completely reducible as R-modules, we have $\mathcal{J}(R) \subseteq \mathcal{J}(R[x; \sigma, \delta])$. Suppose that σ has locally finite order. We know that $\mathcal{J}(R[x; \sigma, \delta]) \cap R$ is a quasi regular ideal of R, so $\mathcal{J}(R[x; \sigma, \delta]) \cap R \subseteq \mathcal{J}(R)$ and consequently $\mathcal{J}(R[x; \sigma, \delta]) \cap R = \mathcal{J}(R)$. This implies that $\mathcal{J}(R)$ is δ -stable and

$$R[x;\sigma,\delta]/\mathcal{J}(R)[x;\sigma,\delta] \simeq (R/\mathcal{J}(R))[x;\widehat{\sigma},\delta],$$

where $\hat{\sigma}$ is an induced automorphism and $\hat{\delta}$ a q-skew $\hat{\sigma}$ -derivation of $R/\mathcal{J}(R)$, respectively. Now it remains to prove that if R is semiprimitive and socular, then $S = R[x; \sigma, \delta]$ is semiprimitive. To this end, suppose that $\mathcal{J}(S) \neq 0$ and let n be the minimum of degrees of nonzero polynomials from $\mathcal{J}(S)$. The set $\{0\} \cup \{a \mid ax^n + g(x) \in \mathcal{J}(S), \text{ where } \deg g(x) < n\}$ is a nonzero ideal of R. In particular, it contains a minimal left ideal of the form I = Re, where e is a nonzero idempotent. Let $f(x) = ex^n + g(x) \in \mathcal{J}(S)$ and m > 0 be such that $\sigma^m(e) = e$. Replacing eventually f(x) by $f(x)x^k$, where k is such that $\deg f(x)x^k$ is divisible by m, we have in the Jacobson radical of S a nonzero polynomial $f(x) = ex^l + h(x)$ such that e is a nonzero idempotent, $\sigma^l(e) = e$, and $\deg h(x) < l$. It is well known that $\mathcal{J}(eSe) = e\mathcal{J}(S)e$. Therefore

$$ef(x)e = ex^{l}e + eh(x)e = ex^{l} + \widetilde{h}(x) \in \mathcal{J}(eSe)$$

where $h(x) \in eSe$. Let $eg(x)e \in eSe$ be a quasi-inverse for ef(x)e. Then eg(x)e has a positive degree s in x and

$$ef(x)e + eg(x)e = ef(x)eg(x)e.$$

Since e is the identity element in eSe, the right-hand side of the above equality has degree $n + s > \max\{n, s\} \ge \deg(ef(x)e + eg(x)e)$. Thus $\mathcal{J}(S) = 0$.

In [6] the authors considered the so-called "finite Jacobson radical" $\mathcal{J}_{fin}(R)$ of a k-algebra R, defined as the intersection of all the annihilators of all finite dimensional irreducible (left) R-modules. Thus by Proposition 9 (3) and Corollary 8 we have

Corollary 11. Let R be a k-algebra with a q-skew σ -derivation δ . If R has q-characteristic zero, then every finite dimensional irreducible left $R[x; \sigma, \delta]$ -module is completely reducible as left R-module. Thus

$$\mathcal{J}_{fin}(R) \subseteq \mathcal{J}_{fin}(R[x;\sigma,\delta]).$$

We note that R can be viewed as a left $R[x; \sigma, \delta]$ -module with the action defined as

$$(\sum_{i} a_{i}x^{i}).r = \sum_{i} a_{i}\delta^{i}(r)$$

The $R[x; \sigma, \delta]$ -submodules of R are precisely the left ideals of R which are stable under δ . Recall that δ is said to be locally algebraic if R is locally finite dimensional as a left k[x]-module. Moreover in this case, if $m \in R$, then $\sigma^{-l}(\operatorname{ann}_R(x^lm)) = \operatorname{ann}_R(\delta^l(\sigma^{-l}(m)))$. Thus if R satisfies dcc on left annihilators, then Corollary 3 guarantees that for any essential left ideal E and a non-zero element $m \in E$ the ring R contains a weak m-sequence. Therefore we can apply Propositions 7, 9 and Corollary 8 to obtain the following

Corollary 12. Let R be a k-algebra of q-characteristic zero, with a q-skew σ -derivation δ . Suppose that one of the following conditions is fulfilled

- (1) R satisfies dcc on left annihilators;
- (2) R is left noetherian and δ is locally algebraic;
- (3) δ is locally nilpotent;

(4) there exists an integer N such that for any $r \in R$ $\delta^{N+1}(r) \in \sum_{j=0}^{N} R\delta^{j}(r)$;

(5) $\sigma = id_R$, q = 1 and the derivation δ is locally algebraic.

If M is a left $R[x; \sigma, \delta]$ -module, then the singular submodule $Sing(_RM)$ over R is also an $R[x; \sigma, \delta]$ -submodule. The left socle $Soc(_RR)$ of R and left singular ideal $Sing(_RR)$ are δ -invariant. In addition, if R contains a minimal left ideal and R does not contain proper δ -stable two-sided ideals, then R is a semisimple artinian ring.

Proof. Let $m \in \text{Sing}(RM)$ and $L = \text{ann}_R(m)$. If L is an essential left ideal of R, then by Proposition 7, $\widehat{L} = L \cap \delta^{-1}(L) = \{r \in L \mid \delta(r) \in L\}$ is essential. It is also clear that $\sigma(\widehat{L})$ is essential, and for every $r \in \widehat{L}$

$$\sigma(r)xm = xrm - \delta(r)m = 0.$$

Hence $\sigma(\widehat{L}) \subseteq \operatorname{ann}_R(xm)$ and $xm \in \operatorname{Sing}(_RM)$. Consequently, $\operatorname{Sing}(_RM)$ is an $R[x; \sigma, \delta]$ -submodule of M.

If R contains a minimal ideal, then $Soc(_RR)$ is a nonzero and δ -stable ideal of R. Therefore if R is δ -simple, then $R = Soc(_RR)$. Since R has unity, R is a finite direct sum of minimal left ideals.

10

Let H be a Hopf algebra with comultiplication Δ and with the group G of group-like elements, i.e., $G = \{g \in H \mid \Delta(g) = g \otimes g\}$. For $g \in G$, let

$$L_q = \{h \in H \mid \Delta(h) = h \otimes 1 + g \otimes h\}$$

be the subspace of g-primitive (skew primitive) elements. It is clear that the group G acts on H by conjugations: $h^g = g^{-1}hg$, and the subspace $L = \bigoplus_{g \in G} L_g$ is G-stable under this action. Following [5], recall that an element $h \in H$ is said to be a *character element* if there exists a character $\chi: G \to k^{\times}$ such that for all $g \in G$

$$g^{-1}hg = \chi(g)h.$$

If h is a nonzero character element, then the character χ is uniquely determined by the above equality, and $\chi = \chi^h$ is called a *weight* of h. A Hopf algebra H is called *character* if the group G is abelian and H is generated as an algebra with unity by character skew primitive elements. This is a large class of Hopf algebras containing, among others, quantum planes, Drinfeld-Jimbo quantized enveloping algebras $U_q(\mathfrak{g})$, and G-universal enveloping algebras of Lie color algebras.

If R is an associative algebra acted on by a character Hopf algebra H, then any character skew primitive element $h \in L_g$ acts on R as a $\chi^h(g)$ -skew g-derivation. In this situation, any left module M over the smash product R # H is a module over the skew polynomial ring R[x; g, h], where the action of x coincides with the action of h, i.e., x.m = hm. Therefore, we are in position to apply Propositions 7, 9 and Corollary 8 to actions of character Hopf algebras.

Theorem 13. Let H be a character Hopf algebra over the field k of characteristic 0 and suppose that $\chi^h(g)$ is not an n^{th} primitive root of unity (n > 1) for any character skew primitive element $h \in L_g$ and $g \in G$. Let R be an associative H-module algebra. Then

- (1) every finite dimensional irreducible left R#H-module is completely reducible as a left R-module. In particular, $\mathcal{J}_{fin}(R) \subseteq \mathcal{J}_{fin}(R#H)$;
- (2) if R is left socular, then irreducible left R#H-modules are completely reducible as left R-modules. Thus $\mathcal{J}(R) \subseteq \mathcal{J}(R#H)$.

References

- [1] C. Faith, Algebra II, Ring Theory, Springer Verlag, Berlin-Heidelberg-New York, 1976.
- [2] E. Formanek, A. V. Jategaonkar, Subrings of Noetherian rings, Proc. Amer. Math. Soc., (2) 46 (1974), 181-186.
- [3] K.R. Goodearl, E.S. Letzter, Prime ideals in skew and q-skew polynomial rings, Mem. Amer. Math. Soc. 109 (1994), no. 521.
- [4] P. Grzeszczuk, On G-systems and G-graded rings, Proc. Amer. Math. Soc., (3) 95 (1985), 348-352.
- [5] V.K. Kharchenko, An algebra of skew primitive elements, Algebra and Logic, (2) 37 (1998), 101-126.
- [6] V. Linchenko, S. Montgomery, L.W. Small, Stable Jacobson radicals and semiprime smash products, Bull. London. Math. Soc., (6) 37 (2005), 860-872.
- [7] M.E. Lorenz, M. Lorenz, Observations on crossed products and invariants of Hopf algebras, Arch. Math., 63 (1994), 119-127.
- [8] M. Lorenz, D.S. Passman, Observations on crossed products and fixed rings, Comm. in Algebra, 8 (1980), 743-779.

FACULTY OF COMPUTER SCIENCE, BIAŁYSTOK UNIVERSITY OF TECHNOLOGY, WIEJSKA 45A, 15-351 BIAŁYSTOK, POLAND

E-mail address: piotrgr@pb.edu.pl