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ON IRREDUCIBLE MODULES OVER q-SKEW POLYNOMIAL RINGS

AND SMASH PRODUCTS

PIOTR GRZESZCZUK

Abstract. Let M be an irreducible left module over a q-skew polynomial ring R[x;σ, δ].
We give sufficient conditions for the complete reducibility of M considered as a module
over the coefficient ring R. We apply it to irreducible modules over smash product R#H,
where H is a Hopf algebra generated by skew primitive elements.

1. Introduction

For a given extension R ⊆ S of associative rings (with the same unity), it is natural to ask
whether (or when) irreducible left S-modules are completely reducible as R-modules. This
question has a positive answer for several classes of “finite type” extensions; for example

(i) finite normalizing extensions R ⊆
n∑
i=1

Rsi ([2]),

(ii) fixed rings of a finite group actions RG ⊆ R, with |G|−1 ∈ R ([8]),
(iii) rings graded by finite groups R1 ⊆ ⊕g∈GRg ([4]).

In this paper we study some extensions of “infinite type”. Namely, we consider modules
over q-skew polynomial rings. We show that, under certain conditions, for a given left
R[x;σ, δ]-module M its socle Soc(RM) over R is also a module over the ring R[x;σ, δ]. Our
conditions imply in particular, that if q is not a root of 1, then

1. finite dimensional irreducible R[x;σ, δ]-modules are completely reducible over R;
2. if R is left socular (e.g., left artinian or right perfect), then irreducible left R[x;σ, δ]-

modules are completely reducible over R.

As a consequence of our results on modules over q-skew polynomial rings, we obtain
a description of certain modules over smash products R#H, where H is a Hopf algebra
generated by skew primitive elements. Namely, we show that if H is a character Hopf
algebra (see [5]) over the field k of characteristic 0, and χh(g) is not an nth primitive root
of 1 (n > 1) for any character skew g-primitive element h ∈ H, then

3. every finite dimensional irreducible left R#H-module is completely reducible as a
left R-module;

4. if R is left socular, then irreducible left R#H-modules are completely reducible as
left R-modules. Thus J (R) ⊆ J (R#H), where J is the Jacobson radical.
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On the other hand we should also point out that in the case where H is finite dimensional
and pointed, there is a strong relationship between the Jacobson radicals of R and the
crossed product R#H. Namely, it is proved in [7] that J (R#H)dimkH ⊆ J (R) · (R#H).

We will now introduce the terminology and notation that will be used throughout the
paper. Let R be an associative ring and σ be an automorphism of R. Then the additive
map δ : R→ R is a σ-derivation if

δ(ab) = δ(a)b+ σ(a)δ(b)

for all a, b ∈ R. Suppose that q is a nonzero central (σ, δ)-constant in R, i.e., σ(q) = q and
δ(q) = 0. If δσ = qσδ, then δ is called a q-skew σ-derivation. If in addition R is a k-algebra,
we assume that q ∈ k×. The following q-Leibniz Rules hold in R and R[x;σ, δ]:

δ(ab) =

n∑
i=0

(
n

i

)
q

σn−iδi(a)δn−i(b) and xna =
n∑
i=1

(
n

i

)
q

σn−iδi(a)xn−i

for all a, b ∈ R and n > 0. The Gaussian q-binomial coefficient
(
n
i

)
q

is defined as the

evaluation at t = q of the polynomial function

(1)

(
n

i

)
t

=
(tn − 1)(tn−1 − 1) . . . (tn−i+1 − 1)

(ti − 1)(ti−1 − 1) . . . (t− 1)
.

We will use the following q-Pascal identity:(
n

i

)
q

=

(
n− 1

i

)
q

+ qn−i
(
n− 1

i− 1

)
q

=

(
n− 1

i− 1

)
q

+ qi
(
n− 1

i

)
q

for n > i > 0 (cf.[3]).
We will say that the ring R has q-characteristic zero if 1 + q + · · · + qm is invertible in

R, for any integer m > 1. If in addition R is a k-algebra, this means that either q is not a
root of unity, or q = 1 and char k = 0.

If r ∈ R, then a left R-module M is said to be r-torsion free if rm 6= 0 for all nonzero
m ∈M . If for any m ∈M there exists an integer n = n(m) such that rnm = 0, then M is
called an r-torsion module.

A submodule E of an R-module M is said to be essential if E ∩X 6= 0 for any nonzero
submodule X ⊆M . It is well known that the intersection of all essential submodules of an
R-module M is equal to the sum of all irreducible submodules of M and is called the socle
of M ; denoted by Soc(M). Finally, Sing(M) will be the singular submodule of M , that is
Sing(M) = {m ∈M | annR(m) is essential in RR}.

2. m-sequences and essential submodules

Let R[x;σ, δ] be a q-skew polynomial ring and M a left R[x;σ, δ]-module. Let E be
an essential R-submodule of M and 0 6= m ∈ E. By an m-sequence we mean a sequence
r = {rn}n>0 of elements of R satisfying the following properties:

1◦ σn(rn)xnm ∈ E for all n > 0 and σs(rs)x
sm 6= 0 for some s;

2◦ if σn+1(rn)xn+1m ∈ E, then rn+1 = rn;
3◦ if σn+1(rn)xn+1m 6∈ E, then rn+1 ∈ Rrn and σn+1(rn+1)xn+1m ∈ E \ {0}.

The smallest integer s such that σs(rs)x
sm 6= 0 we denote by deg r and call the degree of

r.
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Lemma 1. If a ∈ R and σs(a)xsm 6= 0 for some s > 1, then there exists an m-sequence
r = {rn}n>0 such that r0 = a and deg r 6 s.

Proof. The sequence r we define inductively starting with r0 = · · · = ri−1 = a, where i is
the smallest integer such that σi(a)xim 6∈ E. If such i does not exist, the constant sequence
r = {a} satisfies the desired property. Next suppose that j > i− 1 and r0, . . . , rj are given.
If σj+1(rj)x

j+1m ∈ E, then we put rj+1 = rj . If σj+1(rj)x
j+1m /∈ E, then by essentiality

of E there exists 0 6= c = σj+1(r′) ∈ R such that

0 6= cσj+1(rj)x
j+1m = σj+1(r′rj)x

j+1m ∈ E.

In this situation we put rj+1 = r′rj . Clearly the sequence r satisfies conditions 1◦− 3◦, and
from the construction it follows immediately that deg r 6 s. �

An m-sequence r = {rn}n>0 is said to be weak if rj = rj+1 for some j > deg r. If
rj 6= rj+1 for all j > deg r, we call r a strict m-sequence. Note that if r is strict and
j > deg r, then σj(rj)x

jm 6= 0. Indeed, if σj(rj)x
jm = 0, then σj(rj−1)xjm must equal 0,

and hence rj = rj−1.

Lemma 2. Suppose that every m-sequence in R is strict. Then

(1) if a ∈R is such that 0 6= axlm ∈ E, then σ(a)xl+1m 6∈ E;
(2) if r = {rn}n>0 is an m-sequence and l > deg r, then σj(rl)x

jm = 0 for all j < l;
(3) ann(xj+1m) ⊆ σ−1(ann(xjm)) for all j > 0.

Proof. 1. Suppose that 0 6= axlm ∈ E and σ(a)xl+1m ∈ E. By Lemma 1 we can take an
m-sequence r such that r0 = σ−l(a) and deg r 6 l. Then rl = br0 = bσ−l(a), where b ∈ R.
Notice that

σl+1(rl)x
l+1m = σl+1(b)σ(a)xl+1m ∈ E.

Hence rl = rl+1, contradicting our assumption that every m-sequence in R is strict.
2. Suppose that σj(rl)x

jm 6= 0 for some j < l. From the definition of an m-sequence
it follows that we can choose a, b ∈ R such that rl = arj = brj+1. Then 0 6= σj(rl)x

jm =
σj(a)σj(rj)x

jm ∈ E. On the other hand σj+1(rl)x
j+1m = σj+1(b)σj+1(rj+1)xj+1m ∈ E,

which is impossible by 1.
3. Suppose a ∈ R is such that σ(a)xj+1m = 0. By 1. it follows that either axjm = 0

or axjm 6∈ E. If axjm 6∈ E, then there exists r ∈ R such 0 6= raxjm ∈ E. But in this
situation 0 = σ(ra)xj+1m ∈ E. By 1. we obtain that axjm must be equal to 0; thus
ann(xj+1m) ⊆ σ−1(ann(xjm)). �

Corollary 3. If every m-sequence in R is strict, then R contains an infinite strictly de-
scending chain of left ideals

ann(m) ! σ−1(ann(xm)) ! · · · ! σ−l(ann(xlm)) ! . . .

Proof. Lemma 2(3) implies that σ−l(ann(xlm)) ⊆ σ−(l−1)(ann(xl−1m)) for any l > 0. To
see that the inclusion is strict, it is enough to consider an m-sequence r of degree 6 l − 1.
Then Lemma 2(2) yields that rl ∈ σ−(l−1)(ann(xl−1m)), but clearly rl 6∈ σ−l(ann(xlm)). �



4 PIOTR GRZESZCZUK

Lemma 4. If R contains a weak m-sequence, then there exists an element r ∈ R and a
nonnegative integer n such that

1. 0 6= σn(r)xnm ∈ E and σn+1(r)xn+1m ∈ E;
2. rm = σ(r)xm = · · · = σn−1(r)xn−1 = 0.

Proof. Let l > deg(r) be the smallest integer with respect to the equality rl = rl+1. Then
σl(rl)x

lm 6= 0. Otherwise, if σl(rl)x
lm = 0, then from the definition it follows that

σl(rl−1)xlm ∈ E, and hence rl−1 = rl. Next consider the smallest integer n with respect to
σn(rl)x

nm 6= 0. It is clear that n 6 l. Note that if j 6 l then rl = sjrj for some sj ∈ R.
Thus σj(rl)x

jm = σj(sj)σ
j(rj)x

jm ∈ E. Therefore r = rl and n satisfy the lemma. �

Lemma 5. Let M be a q-torsion free left R[x;σ, δ]-module and r ∈ R, m ∈M be such that

rm = σ(r)xm = · · · = σn−1(r)xn−1m = 0.

Then σiδj(r)xim = 0 if i+ j 6 n− 1, and σn(r)xnm = (−1)nq
n(n−1)

2 δn(r)m.

Proof. First we show that if i, j are nonnegative integers and i+j 6 n−1, then σiδj(r)xim =
0.

Suppose that σiδj(r)xim 6= 0 and take i, j such that the sum i + j is possibly minimal.
Next take j possibly minimal. By assumption it follows that j > 0, so

σi+1δj−1(r)xi+1m = 0 and σiδj−1(r)xim = 0.

Thus
0 = x(σiδj−1(r)xim) = σi+1δj−1(r)xi+1m+ δσiδj−1(r)xim

= qiσiδj(r)xim,

a contradiction. The above implies, in particular, that if i+ j = n− 1, then

0 = x(σiδj(r)xim) = σi+1δj(r)xi+1m+ qiσiδj+1(r)xim.

Hence
σn(r)xnm = −qn−1σn−1δ(r)xn−1m = qn−1qn−2σn−2δ2(r)xn−2m

= · · · = (−1)nqn−1qn−2 . . . qδn(r)m = (−1)nq
n(n−1)

2 δn(r)m.

�

For 1 6 i, j 6 n let aij =
(
i+1
j

)
q
q(n−i)j , where

(
i+1
j

)
q

denotes the Gaussian q-binomial

coefficient (see Introduction (1)). Let

Dn = det[aij ] = det



(
2
1

)
q
qn−1

(
2
2

)
q
q2(n−1) 0 . . . 0(

3
1

)
q
qn−2

(
3
2

)
q
q2(n−2)

(
3
3

)
q
q3(n−2) . . . 0

. . . . . . . . . . . . . . .(
n
1

)
q
q

(
n
2

)
q
q2

(
n
3

)
q
q3 . . .

(
n
n

)
q
qn(

n+1
1

)
q

(
n+1

2

)
q

(
n+1

3

)
q

. . .
(
n+1
n

)
q

 .

Lemma 6. Dn = q
n3−n

6 (1 + q + · · ·+ qn).
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Proof. Notice that using q-Pascal identity,

ai+1,j =

(
i+ 2

j

)
q

q(n−i−1)j =

(
i+ 1

j − 1

)
q

q(n−i−1)j +

(
i+ 1

j

)
q

qjq(n−i−1)j

=

(
i+ 1

j − 1

)
q

q(n−i−1)j + aij .

The above implies that

Dn = det



(
2
1

)
q
qn−1

(
2
2

)
q
q2(n−1) 0 . . . 0(

2
0

)
q
qn−2

(
2
1

)
q
q2(n−2)

(
2
2

)
q
q3(n−2) . . . 0

. . . . . . . . . . . . . . .(
n−1

0

)
q
q

(
n−1

1

)
q
q2

(
n−1

2

)
q
q3 . . .

(
n−1
n−1

)
q
qn(

n
0

)
q

(
n
1

)
q

(
n
2

)
q

. . .
(
n
n−1

)
q


=

(
2

1

)
q

qn−1qn−2 . . . q ·Dn−1 −
(

2

2

)
q

q2(n−1)Wn−1,

where

Wn−1 = det


qn−2

(
2
2

)
q
q3(n−2) 0 . . . 0

qn−3
(

3
2

)
q
q3(n−3)

(
3
3

)
q
q4(n−3) . . . 0

. . . . . . . . . . . . . . .

q
(
n−1

2

)
q
q3

(
n−1

3

)
q
q4 . . .

(
n−1
n−1

)
q
qn

1
(
n
2

)
q

(
n
3

)
q

. . .
(
n
n−1

)
q

 .
Applying again the q-Pascal identity, one obtains immediately that

Wn−1 = det


qn−2

(
2
2

)
q
q3(n−2) 0 . . . 0

0
(

2
1

)
q
q3(n−3)

(
2
2

)
q
q4(n−3) . . . 0

. . . . . . . . . . . . . . .

0
(
n−2

1

)
q
q3

(
n−2

2

)
q
q4 . . .

(
n−2
n−2

)
q
qn

0
(
n−1

1

)
q

(
n−1

2

)
q

. . .
(
n−1
n−2

)
q


= qn−2q2(n−3)q2(n−4) . . . q2 ·Dn−2 = qn

2−4n+4Dn−2.

Thus

Dn = (1 + q)q
n(n−1)

2 Dn−1 − qn
2−2n+2Dn−2

with D1 = 1 + q and D2 = q(1 + q+ q2). The lemma follows now by an easy induction. �

Proposition 7. Let M be a left R[x;σ, δ]-module which is Dn-torsion free for all n > 1.
Let E be an essential R-submodule of M such that for every m ∈ E, the ring R contains a
weak m-sequence. Then

E ∩ x−1E = {m ∈ E | xm ∈ E}
is also essential as an R-submodule.
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Proof. Notice that if e ∈ E and xe ∈ E, then for every r ∈ R
xre = σ(r)xe+ δ(r)e ∈ E.

Thus E ∩ x−1E is an R-submodule of M .
Suppose that E∩x−1E is not essential. Then there exists a nonzero element m ∈ E such

that (E ∩ x−1E)∩Rm = 0. Since R contains a weak m-sequence, by Lemma 4 we can take
r ∈ R and n > 0 such that

rm = σ(r)xm = · · · = σn−1(r)xn−1m = 0,

0 6= σn(r)xnm ∈ E and σn+1(r)xn+1m ∈ E.

For 1 6 i, j 6 n, let aij =
(
i+1
j

)
q
q(n−i)j and xj = σn+1−jδj(r)xn+1−jm. Applying the

q-Leibniz rule for i = 1, 2, . . . , n− 1, we obtain

0 = xi+1(σn−i(r)xn−im) =
i+1∑
j=0

(
i+ 1

j

)
q

σi+1−jδjσn−i(r)xn+1−jm

=

i+1∑
j=0

(
i+ 1

j

)
q

q(n−i)jσn+1−jδj(r)xn+1−jm

= σn+1(r)xn+1m+

i+1∑
j=1

aijxj .

Thus
i+1∑
j=1

aijxj = −σn+1(r)xn+1m ∈ E. Moreover, for i = n we have

0 = xn+1rm = σn+1(r)xn+1m+
n∑
j=1

anjxj + δn+1(r)m,

so
n∑
j=1

anjxj ∈ E. Now it is clear that for any j = 1, 2, . . . , n the element Dnxj ∈ E, where

Dn is the determinant from Lemma 6. We note that Dnx1 = Dnσ
nδ(r)xnm ∈ E, so

x(Dnσ
n(r)xnm) = Dnσ

n+1(r)xn+1m+Dnδσ
n(r)xnm

= Dnσ
n+1(r)xn+1m+Dnq

nσnδ(r)xnm ∈ E.

On the other hand, by Lemma 5, σn(r)xnm = (−1)nq
n(n−1)

2 δn(r)m and M is Dn-torsion
free; so

0 6= Dnσ
n(r)xnm ∈ (E ∩ x−1E) ∩Rm,

a contradiction. Therefore E ∩ x−1E is an essential submodule of M . �

Corollary 8. Let M be a left R[x;σ, δ]-module which is Dn-torsion free for all n > 1.
Suppose that for every essential R-submodule E of M and 0 6= m ∈ E, the ring R contains
a weak m-sequence. Then Soc(RM) is an R[x;σ, δ]-module. In particular, if M is simple
as an R[x;σ, δ]-module, then either Soc(RM) = 0 or RM is completely reducible.

Proof. Let m ∈ Soc(RM). If E is an essential submodule of RM , then by Proposition 7
E ∩ x−1E is also essential, so m ∈ E ∩ x−1E. Hence xm ∈ E. Therefore Soc(RM) is an
R[x;σ, δ]-module. �
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3. Applications

In this section we describe situations in which our condition on the existence of weak
m-sequences is automatically satisfied.

Let Λ be a well ordered set of ordinal numbers with the least element 0. For a ring R one
can define a chain of ideals {Sα}α∈Λ as follows: S0 = 0; if α ∈ Λ, then Sα+1/Sα = Soc(R/Sα)
- the left socle of R/Sα. If β ∈ Λ is a limit number, set Sβ =

⋃
α<β

Sα. Recall that a ring R is

said to be left socular (cf. [1]) if every nonzero left R-module contains a simple submodule.
If R is left socular, the set Λ can be chosen such that R = Sα for some α ∈ Λ. Note that
the class of socular rings contains left artinian rings and right perfect rings.

If A is a k-algebra, then A-module M is locally finite dimensional if every finitely gener-
ated submodule of M is finite dimensional.

Proposition 9. Let M be a left R[x;σ, δ]-module and E its essential R-submodule. Suppose
that one of the following conditions is fulfilled

1. R is left socular;
2. R is a left noetherian k-algebra and M is locally finite dimensional as k[x]-module;
3. dimkM <∞;

4. there exists an integer N such that dN+1(r) ∈
N∑
j=0

Rdj(r) for all r ∈ R;

5. M is x-torsion, i.e., for any m ∈M there exists n = n(m) such that xnm = 0;
6. R is a k-algebra, σ = idR and M is locally finite dimensional as k[x]-module.

Then for any nonzero m ∈ E the ring R contains a weak m-sequence.

Proof. 1. Suppose that R is left socular. Let γ be the smallest ordinal such that Sγ contains
an m-sequence {rl}l>0. It is clear that γ is not a limit ordinal. Note that if a ∈ Sγ−1, then

σl(a)xlm = 0. Otherwise, we have an m-sequence {r′l}l>0 with r′0 = a ∈ Sγ−1. Since
Rr′l ⊇ Rr′l+1, one obtains that r′l ∈ Sγ−1 for all l. This contradicts minimality of γ.

Let ϕ : R → R/Sγ−1 be the canonical homomorphism. Since Rr0 ⊇ Rr1 ⊇ · · · ⊇ Rrl ⊇
. . . , we have a chain

ϕ(Rr0) ⊇ ϕ(Rr1) ⊇ · · · ⊇ ϕ(Rrl) ⊇ . . .
of cyclic submodules of a semisimple module Sγ/Sγ−1. Since ϕ(Rr0) is contained in a
finite direct sum of simple modules, this chain terminates. On the other hand, if ϕ(Rrl) =
ϕ(Rrl+1), then there exist r′ ∈ R and a ∈ Sγ−1 such that rl = r′rl+1 + a. By the above,

σl+1(a)xl+1m = 0, so

σl+1(rl)x
l+1m = σl+1(r′)σl+1(rl+1)xl+1m ∈ E.

From the definition of an m-sequence it follows that rl = rl+1. Therefore the sequence r is
weak.

2. Suppose that every m-sequence in R is strict. Corollary 3 tells us that the chain of
left ideals

ann(m) ! σ−1(ann(xm)) ! · · · ! σ−l(ann(xlm)) ! . . .



8 PIOTR GRZESZCZUK

is strict. Since dim spanF (m,xm, x2m, . . . ) <∞, there exits an integer t such that xnm ∈
spanF (m,xm, x2m, . . . , xtm) for all n > t. Then

ann(m,xm, x2m, . . . , xtm) ⊆ ann(xnm)

for n > t, and consequently
∞⋂
l=0

ann(xlm) =
t⋂
l=0

ann(xlm). Set I =
t⋂
l=0

ann(xlm) and take

r ∈ I. For any l > 1, r ∈ ann(xlm), so

σ−l(r) ∈ σ−l(ann(xlm)) ⊆ σ−(l−1)(ann(xl−1m)),

hence σ−1(r) ∈ ann(xl−1m). Then it follows that σ−1(I) ⊆ I, and so I ⊆ σ(I). The ring R
is left noetherian, so the chain I ⊆ σ(I) ⊆ σ2(I) . . . must stop. It implies immediately that
σ(I) = I.

Next we claim that there exists an increasing sequence {f(n)}n>0 of nonnegative integers
such that

σ

f(n)⋂
l=0

ann(xlm)

 *
⋂

j>f(n)

ann(xjm).

We proceed by induction. By Corollary 3 we can put f(0) = 0. Assume n > 0 and let

a ∈
f(n)⋂
l=0

ann(xlm) be such that σ(a)xim 6= 0 for some i > f(n). Since I is σ-stable, a 6∈ I;

so there exists s > f(n) such that a ∈
s−1⋂
l=0

ann(xlm) and axsm 6= 0. Take b ∈ R such that

0 6= baxsm ∈ E. If every m-sequence is strict, then by Lemma 2(1), σ(ba)xs+1m 6∈ E.
Since E is essential, one can choose c ∈ R such that 0 6= σ(cba)xs+1m ∈ E. Again

by Lemma 2(1), cbaxsm = 0, so cba ∈
s⋂
l=0

ann(xlm). Since σ(cba)xs+1m 6= 0, we have

σ

(
s⋂
l=0

ann(xlm)

)
*
⋂
j>s

ann(xjm). Thus it suffices to put f(n + 1) = s. This proves the

claim.

But now, if f(n) > t, then I =
f(n)⋂
l=0

ann(xlm) =
∞⋂
l=0

ann(xlm). Since I is σ-stable,

σ

f(n)⋂
l=0

ann(xlm)

 ⊆ ∞⋂
l=0

ann(xlm) ⊆
⋂

j>f(n)

ann(xjm),

contradicting the definition of f(n). Thus R contains a weak m-sequence.

3. Let P = ann(M). Then dimF (R/P ) < ∞ and P ⊆ ann(xlm) for any l. Note that
the mapping a+ ann(xlm) 7−→ σ−l(a) + σ−l(ann(xlm)) provides an isomorphism of vector
spaces R/ann(xlm) ≈ R/σ−l(ann(xlm)). Thus

dimF R/σ
−l(ann(xlm)) 6 dimF (R/P ).

From Corollary 3 it follows that R contains a weak m-sequence.

4. Let r = {rn}n>0 be a strict m-sequence with deg r 6 N . Then σj(rN+1)xjm = 0 for
all j 6 N and σN+1(rN+1)xN+1m 6= 0. By Lemma 5,

0 = σj(rN+1)xjm = (−1)jq
j(j−1)

2 δj(r)m
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for all j 6 N. Thus

σN+1(rN+1)xN+1m = (−1)N+1N(N + 1)

2
δN+1(rN+1)m

∈
N∑
j=0

Rδj(rN+1)m = 0,

a contradiction. Consequently, in this situation, every m-sequence is weak.

5. It follows directly from Corollary 3.

6. Suppose σ = idR. If every m-sequence in R is strict, Corollary 3 says that the chain
ann(m) ! ann(xm) ! · · · ! ann(xnm) ! . . . is strict. But this contradicts our assumption
that spanF {m,xm, . . . , xlm. . . } is finite dimensional. �

Recall that an automorphism σ of the ring R is said to be of locally finite order if for
every r ∈ R, there exists an integer n = n(r) > 0 such that σn(r) = r. If the ring R is left
socular, then nonzero left R-modules contain simple submodules. Therefore Proposition 9
(1) and above Corollary 8 give us

Corollary 10. If R is a left socular ring of q-characteristic zero, then simple left R[x;σ, δ]-
modules are completely reducible as left R-modules. Thus the Jacobson radical J (R) is
contained in the Jacobson radical J (R[x;σ, δ]). Moreover if the automorphism σ has locally
finite order, then

J (R[x;σ, δ]) = J (R)[x;σ, δ].

Proof. Since simple R[x;σ, δ]-modules are completely reducible as R-modules, we have
J (R) ⊆ J (R[x;σ, δ]). Suppose that σ has locally finite order. We know that J (R[x;σ, δ])∩
R is a quasi regular ideal of R, so J (R[x;σ, δ])∩R ⊆ J (R) and consequently J (R[x;σ, δ])∩
R = J (R). This implies that J (R) is δ-stable and

R[x;σ, δ]/J (R)[x;σ, δ] ' (R/J (R))[x; σ̂, δ̂],

where σ̂ is an induced automorphism and δ̂ a q-skew σ̂-derivation of R/J (R), respectively.
Now it remains to prove that if R is semiprimitive and socular, then S = R[x;σ, δ] is
semiprimitive. To this end, suppose that J (S) 6= 0 and let n be the minimum of degrees of
nonzero polynomials from J (S). The set {0}∪{a | axn+g(x) ∈ J (S),where deg g(x) < n}
is a nonzero ideal of R. In particular, it contains a minimal left ideal of the form I = Re,
where e is a nonzero idempotent. Let f(x) = exn + g(x) ∈ J (S) and m > 0 be such
that σm(e) = e. Replacing eventually f(x) by f(x)xk, where k is such that deg f(x)xk is
divisible by m, we have in the Jacobson radical of S a nonzero polynomial f(x) = exl+h(x)
such that e is a nonzero idempotent, σl(e) = e, and deg h(x) < l. It is well known that
J (eSe) = eJ (S)e. Therefore

ef(x)e = exle+ eh(x)e = exl + h̃(x) ∈ J (eSe),

where h̃(x) ∈ eSe. Let eg(x)e ∈ eSe be a quasi-inverse for ef(x)e. Then eg(x)e has a
positive degree s in x and

ef(x)e+ eg(x)e = ef(x)eg(x)e.



10 PIOTR GRZESZCZUK

Since e is the identity element in eSe, the right-hand side of the above equality has degree
n+ s > max{n, s} ≥ deg(ef(x)e+ eg(x)e). Thus J (S) = 0.

�

In [6] the authors considered the so-called “finite Jacobson radical” Jfin(R) of a k-algebra
R, defined as the intersection of all the annihilators of all finite dimensional irreducible (left)
R-modules. Thus by Proposition 9 (3) and Corollary 8 we have

Corollary 11. Let R be a k-algebra with a q-skew σ-derivation δ. If R has q-characteristic
zero, then every finite dimensional irreducible left R[x;σ, δ]-module is completely reducible
as left R-module. Thus

Jfin(R) ⊆ Jfin(R[x;σ, δ]).

We note that R can be viewed as a left R[x;σ, δ]-module with the action defined as

(
∑
i

aix
i).r =

∑
i

aiδ
i(r).

The R[x;σ, δ]-submodules of R are precisely the left ideals of R which are stable under δ.
Recall that δ is said to be locally algebraic if R is locally finite dimensional as a left k[x]-
module. Moreover in this case, if m ∈ R, then σ−l(annR(xlm)) = annR(δl(σ−l(m)). Thus
if R satisfies dcc on left annihilators, then Corollary 3 guarantees that for any essential left
ideal E and a non-zero element m ∈ E the ring R contains a weak m-sequence. Therefore
we can apply Propositions 7, 9 and Corollary 8 to obtain the following

Corollary 12. Let R be a k-algebra of q-characteristic zero, with a q-skew σ-derivation δ.
Suppose that one of the following conditions is fulfilled

(1) R satisfies dcc on left annihilators;
(2) R is left noetherian and δ is locally algebraic;
(3) δ is locally nilpotent;

(4) there exists an integer N such that for any r ∈ R δN+1(r) ∈
N∑
j=0

Rδj(r);

(5) σ = idR, q = 1 and the derivation δ is locally algebraic.

If M is a left R[x;σ, δ]-module, then the singular submodule Sing(RM) over R is also an
R[x;σ, δ]-submodule. The left socle Soc(RR) of R and left singular ideal Sing(RR) are δ-
invariant. In addition, if R contains a minimal left ideal and R does not contain proper
δ-stable two-sided ideals, then R is a semisimple artinian ring.

Proof. Let m ∈ Sing(RM) and L = annR(m). If L is an essential left ideal of R, then by

Proposition 7, L̂ = L ∩ δ−1(L) = {r ∈ L | δ(r) ∈ L} is essential. It is also clear that σ(L̂)

is essential, and for every r ∈ L̂
σ(r)xm = xrm− δ(r)m = 0.

Hence σ(L̂) ⊆ annR(xm) and xm ∈ Sing(RM). Consequently, Sing(RM) is an R[x;σ, δ]-
submodule of M .

IfR contains a minimal ideal, then Soc(RR) is a nonzero and δ-stable ideal ofR. Therefore
if R is δ-simple, then R = Soc(RR). Since R has unity, R is a finite direct sum of minimal
left ideals. �
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Let H be a Hopf algebra with comultiplication ∆ and with the group G of group-like
elements, i.e., G = {g ∈ H | ∆(g) = g ⊗ g}. For g ∈ G, let

Lg = {h ∈ H | ∆(h) = h⊗ 1 + g ⊗ h}
be the subspace of g-primitive (skew primitive) elements. It is clear that the group G acts
on H by conjugations: hg = g−1hg, and the subspace L = ⊕g∈GLg is G-stable under this
action. Following [5], recall that an element h ∈ H is said to be a character element if there
exists a character χ : G→ k× such that for all g ∈ G

g−1hg = χ(g)h.

If h is a nonzero character element, then the character χ is uniquely determined by the above
equality, and χ = χh is called a weight of h. A Hopf algebra H is called character if the
group G is abelian and H is generated as an algebra with unity by character skew primitive
elements. This is a large class of Hopf algebras containing, among others, quantum planes,
Drinfeld-Jimbo quantized enveloping algebras Uq(g), and G-universal enveloping algebras
of Lie color algebras.

If R is an associative algebra acted on by a character Hopf algebra H, then any character
skew primitive element h ∈ Lg acts on R as a χh(g)-skew g-derivation. In this situation,
any left module M over the smash product R#H is a module over the skew polynomial ring
R[x; g, h], where the action of x coincides with the action of h, i.e., x.m = hm. Therefore,
we are in position to apply Propositions 7, 9 and Corollary 8 to actions of character Hopf
algebras.

Theorem 13. Let H be a character Hopf algebra over the field k of characteristic 0 and
suppose that χh(g) is not an nth primitive root of unity (n > 1) for any character skew
primitive element h ∈ Lg and g ∈ G. Let R be an associative H-module algebra. Then

(1) every finite dimensional irreducible left R#H-module is completely reducible as a
left R-module. In particular, Jfin(R) ⊆ Jfin(R#H);

(2) if R is left socular, then irreducible left R#H-modules are completely reducible as
left R-modules. Thus J (R) ⊆ J (R#H).
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