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SKEW POWER SERIES RINGS
OF DERIVATION TYPE

JEFFREY BERGEN AND PIOTR GRZESZCZUK

Abstract. In this paper, we contrast the structure of a noncommutative
algebra R with that of the skew power series ring R[[y; d]]. Several of our
main results examine when the rings R, Rd, and R[[y; d]] are prime or
semiprime under the assumption that d is a locally nilpotent derivation.

1. Introduction

The goal of this paper is to contrast the structure of a noncommutative
algebra R with that of the skew power series ring R[[y;σ, d]]. We begin with
a preview of our main results and then will define the terms and objects that
will appear throughout this paper.

When d is a σ-derivation, much work has been done comparing the structure
of R with the ring of invariants Rd and the skew polynomial ring R[y;σ, d].
Although there are some results in [1], relatively little has been done con-
trasting R and R[[y;σ, d]]. When examining a nonzero element of R[y;σ, d],
one can always look at its leading coefficient. This has proven to be a use-
ful tool for comparing the structure of R with that of R[y;σ, d]. However,
the sums in R[[y;σ, d]] are infinite, therefore most elements do not have a
leading coefficient. Thus new tools and techniques are needed to understand
R[[y;σ, d]]. The primary tools we will use in this paper are to examine the ac-
tion of R[[y;σ, d]] on R and also to look at the trailing coefficients of elements
of R[[y;σ, d]].

In Section 2, we consider the case where d is a locally nilpotent, surjective q-
skew σ-derivation. Theorem 1 shows that, regardless of the characteristic, R is
a free right Rd-module of countably infinite rank and R[[y;σ, d]] is isomorphic
to End(RRd). This result indicates that the relationship between R[[y;σ, d]]
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and Rd is often stronger than the one between R[[y;σ, d]] and R. It follows, in
Corollary 2, that R[[y;σ, d]] is prime or semiprime if and only if Rd has these
properties.

We also construct an example, in characteristic 0, of a prime algebra R with
a locally nilpotent, surjective derivation d such that R[[y; d]] is not semiprime.
In addition, we show that examples exist where Rd is commutative. How-
ever, if we assume that nil subrings of R are nilpotent, then the primeness or
semiprimeness of R and R[[y; d]] are equivalent.

In Section 3, we drop the assumption that d is surjective and deal primarily
with ordinary derivations. We first show that one direction of Corollary 2 no
longer holds as we provide an example where Rd is not semiprime and R[[y; d]]
is prime. The main results of this section are Theorems 10 and 12 in which
we show that if Rd is prime or semiprime, then so is R[[y; d]].

We can now introduce the terminology that will be used throughout this
paper. Let R be an algebra over a field K. If σ is a K-linear automorphism
of R, then a σ-derivation d is a K-linear map d : R→ R such that

d(rs) = d(r)s+ σ(r)d(s),

for all r, s ∈ R.

There are two K-algebras closely related to R and d which have received a
great deal of study. One is the ring of invariants Rd, which is defined as

Rd = {r ∈ R | d(r) = 0}.
Observe that R is a right module over Rd. The other algebra is the skew
polynomial ring R[y;σ, d], which consists of all formal sums

a0 + a1y + a2y
2 + · · ·+ any

n,

where n ≥ 0 and each ai ∈ R. The algebra R[y;σ, d] inherits all the relations
of R along with the additional relation

yr = σ(r)y + d(r),

for all r ∈ R.

Observe that R is a left R[y;σ, d]-module. If w = a0+a1y+a2y
2+· · ·+anyn ∈

R[y;σ, d] and r ∈ R, then we can define the action of w on r as

w(r) = a0r + a1d(r) + a2d
2(r) + · · ·+ and

n(r).

We can now define the skew power series ring R[[y;σ, d]] as all formal sums

a0 + a1y + a2y
2 + · · · ,

where each ai ∈ R. Similar to the situation for R[y;σ, d], the algebra R[[y;σ, d]]
inherits all the relations of R along with yr = σ(r)y + d(r), for all r ∈ R.
However, at this point, multiplication in R[[y;σ, d]] is not necessarily well
defined. To see this, let us look at the product (1 + y + y2 + · · · )(r) in
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R[[y;σ, d]]. Observe that when will pull r past the various powers of y, the
constant term becomes the sum

r + d(r) + d2(r) + · · ·
In general, this sum is not defined in R. Therefore, when discussing R[[y;σ, d]],
we will only consider σ-derivations which are locally nilpotent. This means
that, for every r ∈ R, there exists n = n(r) ≥ 1 such that dn(r) = 0. This
allows us to compute the constant term of (1 + y + y2 + · · · )(r) as the sum
only involves a finite number of nonzero terms.

If σ = 1 and d is an ordinary derivation, then d being locally nilpotent is
sufficient to make multiplication in R[[y;σ, d]] well defined. However, even if d
is locally nilpotent, when we drop the assumption that σ = 1, another problem
can arise. Let us again examine the product (1 + y + y2 + · · · )(r) and we will
now try to compute the coefficient of y. To this end, for every n ≥ 0, let

pn(r) = dnσ(r) + dn−1σd(r) + · · ·+ dσdn−1(r) + σdn(r).

Then the coefficient of y is

p0(r) + p1(r) + p2(r) + · · ·
Note that even if d is locally nilpotent, this sum might not be defined in R.

If q is a nonzero element of K, we say that our σ-derivation is q-skew if

dσ(r) = qσd(r),

for all r ∈ R. For any n ≥ 0, let ker dn denote the kernel of dn. Observe that
if d is q-skew, then σ is a bijection of ker dn. It is easy to see, in this case, that
the sum p0(r)+p1(r)+p2(r)+· · · now contains only a finite number of nonzero
terms. In fact, if d is locally nilpotent and q-skew then whenever we multiply
elements in R[[y;σ, d]], all the sums which arise when computing coefficients
of powers of y only involve a finite number of nonzero terms. Therefore, when
we examine R[[y;σ, d]], we will always be assuming that d is a locally nilpotent
q-skew σ-derivation. In this situation R also becomes a left R[[y;σ, d]]-module,
for if w = a0 + a1y + a2y

2 + · · · ∈ R[[y;σ, d]] and r ∈ R, we can define the
action of w on r as

w(r) = a0r + a1d(r) + a2d
2(r) + · · ·

If we let End(RRd) denote the Rd-linear maps from R to R, then the action of
R[[y;σ, d]] on R defines a ring homomorphism

ψ : R[[y;σ, d]]→ End(RRd).

2. Skew Derivations - The Surjective Case

In this section, we look at the relationship between R, Rd, and R[[y;σ, d]]
in the important special case where our locally nilpotent q-skew σ-derivation
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d is surjective. In Theorems 10 and 12 of the next section, we will see that the
assumption that d is surjective is superfluous under certain conditions.

We begin with a result which indicates a very tight connection between R,
Rd, and R[[y;σ, d]].

Theorem 1. Let R be an algebra with a q-skew σ-derivation d which is locally
nilpotent and surjective. Then R is a free right module of countably infinite
rank over the invariant subring Rd and the skew power series ring R[[y;σ, d]]
is isomorphic to the endomorphism ring End(RRd).

Proof. Let x0 = 1; then the surjectivity of d allows us to construct a sequence
x0, x1, x2, . . . such that d(xi) = xi−1, for all i ≥ 1. We will now verify, by
induction, that the kernel of dn is equal to the direct sum

x0R
d ⊕ x1Rd ⊕ · · · ⊕ xn−1Rd,

for every n ≥ 1.

The n = 1 case is clear, therefore we may assume the result holds for some
n ≥ 1 and we must show that the kernel of dn+1 is

x0R
d ⊕ x1Rd ⊕ · · · ⊕ xn−1Rd ⊕ xnRd.

To show that this sum is direct, we need to show that

xnR
d ∩ (x0R

d ⊕ x1Rd ⊕ · · · ⊕ xn−1Rd) = 0.

However, if r ∈ Rd such that

xnr ∈ x0Rd ⊕ x1Rd ⊕ · · · ⊕ xn−1Rd = ker dn,

we have

0 = dn(xnr) = dn(xn)r = x0r = r.

Thus r = 0, hence xnr = 0, and the intersection above is indeed equal to 0.

Next, since dn+1(xn) = 0, it follows that

dn+1(xnR
d) = dn+1(xn)Rd = 0.

Thus xnR
d ⊂ ker dn+1, hence

x0R
d ⊕ x1Rd ⊕ · · · ⊕ xn−1Rd ⊕ xnRd ⊂ ker dn + ker dn+1 ⊂ ker dn+1.

For the reverse inclusion, suppose a ∈ ker dn+1. Therefore d(a) ∈ ker dn,
hence

d(a) = x0r1 + x1r2 + · · ·+ xn−1rn,

where each ri ∈ Rd. If we let

(1) r0 = a− (x1r1 + · · ·+ xnrn),
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then

d(r0) = d(a− (x1r1 + · · ·+ xnrn))

= d(a)− (d(x1)r1 + · · ·+ d(xn)rn)

= d(a)− (x0r1 + · · ·+ xn−1rn) = 0.

Therefore r0 ∈ Rd and it now follows from (1) that

a = x0r0 + x1r1 + · · ·+ xnrn ∈ x0Rd ⊕ x1Rd ⊕ · · · ⊕ xn−1Rd ⊕ xnRd.

Thus the kernel of dn is equal to x0R
d ⊕ x1Rd ⊕ · · · ⊕ xn−1Rd.

Since d is locally nilpotent, R =
⋃∞

n=1 ker dn. In light of the previous
argument, we know now that

R = ⊕∞i=0 xiR
d.

Thus R is a free right module of countably infinite rank over Rd. Furthermore,
the action of every element of R[[y;σ, d]] and End(RRd) on R is completely
determined by its action on the sequence x0, x1, x2, . . . . It now suffices to
show that the homomorphism

ψ : R[[y;σ, d]]→ End(RRd)

induced by the action of R[[y;σ, d]] on R is both injective and surjective.

If the power series
f = a0 + a1y + a2y

2 + · · ·
acts as 0 on R then, for all n ≥ 0, we have

(2) 0 = f(xn) = (a0 + a1y + a2y
2 + · · · )(xn)

= a0xn + a1xn−1 + · · ·+ an−1x1 + anx0.

Letting n = 0 immediately tells us that a0 = 0. Furthermore, if we already
know that 0 = a0 = a1 = · · · = an−1, then (2) tells us that an = 0. Thus
induction asserts that f = 0 and so, the homomorphism ψ is injective.

Finally, suppose w ∈ End(RRd); we need to construct some f ∈ R[[y;σ, d]]
whose action on R is the same as that of w. To this end, for n ≥ 0, let
tn = w(xn) and now construct a sequence of elements of R as follows:

a0 = t0

and if a0, a1, . . . , an have already been constructed, let

an+1 = tn+1 − (a0xn+1 + a1xn + · · ·+ anx1).

Using the above sequence, we can let f be the power series a0+a1y+a2y
2+· · · .

Recall that dn(xm) = xm−n, for all n ≤ m, and dn(xm) = 0, whenever n > m.
Combining these facts with the construction of the sequence a0, a1, a2 . . . , we
have

f(x0) = a0x0 = a0 = t0 = w(x0)
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and

f(xn+1) = a0xn+1 + a1xn + · · ·+ anx1 + an+1x0 = tn+1 = w(xn+1).

Thus the action on R of the series f is the same as that of w, hence ψ is also
surjective. Thus R[[y;σ, d]] ≈ End(RRd), as desired.

�

Theorem 1 indicates that there is a particularly close relationship between
the structure of Rd and that of R[[y;σ, d]]. In the prime and semiprime cases,
we record this as

Corollary 2. Let R be an algebra with a q-skew σ-derivation d which is locally
nilpotent and surjective and let Rd denote the kernel of d.

(1) The skew power series ring R[[y;σ, d]] is prime if and only if Rd is
prime.

(2) The skew power series ring R[[y;σ, d]] is semiprime if and only if Rd

is semiprime.

Proof. By Theorem 1, R is a free right module of countably infinite rank
over Rd and R[[y;σ, d]] is isomorphic to the endomorphism ring End(RRd).
Therefore, R[[y;σ, d]] can be viewed as the ring of countably infinite matrices
over Rd where each column has only a finite number of nonzero entries. This
implies that R[[y;σ, d]] is prime or semiprime if and only if Rd has the same
property. �

The relationship between a ring R with a skew derivation d and the skew
polynomial ring R[y;σ, d] has been extensively studied for many years. In
particular, it is well known that if R is prime or semiprime, then R[y;σ, d]
inherits these properties. It is somewhat surprising that for skew power series
rings, the relationship between Rd and R[[y;σ, d]] appears to be stronger than
the relationship between R and R[[y;σ, d]]. In light of Corollary 2 and the
known results on skew polynomial rings, one might suspect that if R is prime,
then R[[y;σ, d]] would also be prime. However, the next example shows that
even for ordinary surjective derivations in characteristic 0, it is possible for R
to be prime and for R[[y; d]] to fail to be semiprime. In fact, an example exists
in which Rd is commutative.

Example 3. A prime algebra R of characteristic 0 with a locally nilpotent,
surjective derivation d such that R[[y; d]] is not semiprime. In addition, R can
be chosen such that Rd is commutative.

Proof. Let K be a field of characteristic 0 and let B be the Grassmann algebra
over K generated by the countably infinite set e1, e2, . . . . Recall that eiej =
−ejei, for all i, j. The K-linear function δ defined as δ(ei) = ei+1, for all
i ≥ 1, extends to a derivation of B. It was shown in [3] that although B is not
semiprime, the skew polynomial ring B[x; δ] is prime.
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We can now let R = B[x; δ] and can define the derivation d of R as d(B) = 0
and d(x) = 1. It is not difficult to see that d is a locally nilpotent, surjective
derivation of R with B = Rd. Since Rd is not semiprime, Corollary 2 asserts
that although R is prime, R[[y; d]] is not semiprime.

If we let A denote the center of B, then δ restricts to A. It is also shown
in [3] that A[x; δ] is prime even though A is commutative and not semiprime.
If we had instead let R = A[x; δ], then the identical reasoning as above tells
us that the function d defined as d(A) = 0 and d(x) = 1 is a locally nilpotent,
surjective derivation of the prime ring R such that Rd is commutative and
R[[y; d]] is not semiprime.

�

In various types of rings, such as rings with the ascending chain condition on
left and right annihilators or one-sided Goldie rings, nil subrings are nilpotent
[4], [5]. The next result shows that if nil subrings of R are nilpotent, then the
properties of being prime and semiprime are indeed inherited by R[[y; d]] from
R.

Theorem 4. Let R be an algebra of characteristic 0 with a locally nilpotent,
surjective derivation d.

(1) if R[[y; d]] is (semi)prime then R is (semi)prime
(2) if nil subrings of R are nilpotent and if R is (semi)prime then R[[y; d]]

is (semi)prime.

Proof. In order to prove (1), let us first assume that R[[y; d]] is prime or
semiprime. Then Corollary 2 asserts that Rd is also prime or semiprime.
However, we can now apply Lemma 2.1 in [2] to see that R = Rd[x; δ], for
some derivation δ of Rd. However, if Rd is prime or semiprime, then it is
well known that the skew polynomial ring Rd[x; δ] is also prime or semiprime.
Hence R is prime or semiprime, as desired.

For (2), as in the previous paragraph, R = Rd[x; δ], where δ is a derivation of
Rd. Since R is a skew polynomial ring over Rd, if R is semiprime then Rd is δ-
semiprime. This means that Rd has no nonzero nilpotent δ-stable ideals. Now,
let N denote the sum of all the nil ideals of Rd. Since R has characteristic
0, N is a δ-stable ideal of Rd. However, since N is a nil subring of R, it
must be nilpotent. The fact that Rd is δ-semiprime immediately implies that
N = 0, hence Rd is semiprime. By Corollary 2, it now follows that R[[y; d]] is
semiprime.

Finally, suppose R is prime. By the argument in the previous paragraph,
Rd is semiprime. In addition, since R = Rd[x; δ], the primeness of R implies
that Rd is δ-prime. Thus the annihilator of every nonzero δ-stable ideal of Rd

is zero. If J 6= 0 is an ideal of Rd, let I = {a ∈ Rd | aJ = 0}. Since

Iδ(J2) ⊆ I(δ(J)J + Jδ(J)) ⊆ IJ = 0,
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we have

(δ(I)J)2 ⊆ δ(I)J2 = δ(IJ2) = 0.

The semiprimeness of Rd now implies that δ(I)J = 0. Thus δ(I) ⊆ I, hence I
is a δ-stable ideal of Rd with a nonzero annihilator. As a result, I = 0, which
tells us that the annihilator of every nonzero ideal of Rd is 0. Hence Rd is
prime. It now follows, by Corollary 2, that R[[y; d]] is also prime.

�

As another application of Theorem 1, we show that nonisomorphic algebras
with nonisomorphic skew polynomial rings can still result in isomorphic skew
power series rings.

Example 5. Noetherian domains R1 and R2 of characteristic 0 with locally
nilpotent, surjective derivations d1, d2, respectively, such that R1 and R2 are
not isomorphic, R1[y; d1] and R2[y; d2] are not isomorphic, yet R1[[y; d1]] and
R2[[y; d2]] are isomorphic.

Proof. Let K be a field of characteristic 0 and let R1 be the commutative
polynomial ring over K generated by s1, t1. Then let R2 be the K-algebra
generated by s2, t2 with the relation s2t2 − t2s2 = s2. Thus R2 is the en-
veloping algebra of the 2-dimensional nonabelian Lie algebra. Since R2 is not
commutative, R1 and R2 are clearly not isomorphic.

For i = 1, 2, let di be the K-linear function defined as di(si) = 0 and
di(ti) = 1. It is not hard to check that for both values of i, di extends to
a locally nilpotent, surjective derivation of Ri with (Ri)

di = K[si]. Thus
(R1)

d1 and (R2)
d2 are isomorphic. Theorem 1 now implies that R1[[y; d1]] and

R2[[y; d2]] are isomorphic.

It now suffices to show that R1[y; d1] and R2[y; d2] are not isomorphic. We
will do this by comparing their centers. To this end, if the center of R2[y; d2]
is not contained in R2, let w be an element in the center of R2[y; d2] which has
the smallest degree in y of those not in R2. Therefore, we can write

w = a0 + a1y + · · ·+ an−1y
n−1 + any

n,

where each ai ∈ R2 and n ≥ 1. If r ∈ R2, then commuting w with r yields

0 = [r, w] = b0 + b1y + · · ·+ bn−1y
n−1 + [r, an]yn,

where each bi ∈ R2. Therefore [r, an] = 0, hence an is central in R2. It is
well known that the center of the R2 is the field K, therefore without loss of
generality we may assume that an = 1.

If r ∈ R2, then since yr = ry + d2(r), it follows that

ynr = ryn + nd2(r)y
n−1 + cn−2y

n−2 + · · ·+ c1y + c0,
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where each ci ∈ R2. Therefore, commuting w with r now yields

0 = [w, r] = [a0, r] + a1[y, r] + [a1, r]y

+ · · ·+ an−1[y
n−1, r] + [an−1, r]y

n−1 + [yn, r]

= f0 + f1y + · · ·+ fn−2y
n−2 + ([an−1, r] + nd2(r))y

n−1.

The previous equation tells us that

d2(r) = r(
an−1
n

)− (
an−1
n

)r,

for all r ∈ R2. As a result, the derivation d2 is inner, However, this leads to a
contradiction as it is easy to check that there is no element of R2 which can be
commuted with t2 and give an answer of 1. Hence, it is indeed the case that
the center of R2[y; d2] is contained in R2. But since the center of R2 is K, we
now know that the center of R2[y; d2] is K.

On the other hand, K[s1] is central and R1 and d1(K[s1]) = 0, thus K[s1]
is central in R1[y; d1]. Since the centers of R1[y; d1] and R2[y; d2] are not
isomorphic, it follows that R1[y; d1] and R2[y; d2] are not isomorphic.

�

As we look back at Example 5, we note that since K[s1] is central in R1[y; d1],
it is also central in R1[[y; d1]]. Therefore, despite the fact that the center of
R2[y; d2] is K, the center of R2[[y; d2]] contains a polynomial ring. Since none
of the nonconstant polynomials in R2[y; d2] are central, it raises the question
as to what do some of the central elements of R2[[y; d2]] look like?

Recall that R2[[y; d2]] has three relations

[s2, t2] = s2, [y, s2] = 0, [y, t2] = 1.

The third relation says that when a power series with coefficients in K is
commuted with t2, the answer is the derivative of the series with respect to
y. Therefore, if we let e−y denote the familiar power series from calculus, we
have

[e−y, t2] = −e−y.
This implies that

[s2e
−y, t2] = s2[e

−y, t2] + [s2, t2]e
−y = s2(−e−y) + s2(e

−y) = 0.

Therefore s2e
−y commutes with t2. Since s2 and y commute, it follows that

the series

s2e
−y = s2 − s2y +

1

2
s2y

2 − 1

6
s2y

3 + · · ·

is central in R2[[y; d2]]. Therefore, for every n ∈ N, the series (s2e
−y)n =

(s2)
ne−ny is also central in R2[[y; d2]].

Theorem 1 showed us that if d is locally nilpotent and surjective, then the
skew power series ring cannot be a domain. In the next example, we will see
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that it is still quite common for locally nilpotent derivations to produce skew
power series rings which are domains.

Theorem 6. Let K be a field of characteristic 0 and let d be a locally nilpotent
derivation of the commutative polynomial ring R = K[t][x] such that d(K[t]) =
0 and d(x) ∈ K[t]. Then the skew power series ring R[[y; d]] is a domain if
and only if d(x) is not a nonzero element of K.

Proof. In one direction, if d(x) = α ∈ K∗, then when we let x1 = xα−1, we
have that R = K[t][x1] with d(K[t]) = 0 and d(x1) = 1. By Lemma 2.1 in [2]
d is surjective. Theorem 1 now asserts that R[[y; d]] is the endomorphism ring
of K[t][x1] as a module over K[t] and so, R[[y; d]] is not a domain.

In the other direction, we need to consider when d(x) is either 0 or a polyno-
mial of degree at least 1 in K[t]. If d(x) = 0, then R[[y; d]] is an ordinary power
series ring in the variable y with coefficients in the domain K[t][x]. Therefore,
in this case, R[[y; d]] is a domain. As a result, it remains to consider the case
where d(x) ∈ K[t] has degree at least one. We can let p(t) ∈ K[t] be a ir-
reducible polynomial which divides d(x). Now suppose f ∈ K[t][x]; we can
write

f =
l∑

i=0

fi(t)x
i,

where each fi(t) ∈ K[t]. Then there exists a largest integer j ≥ 0 such that
p(t)j divides each fi(t). In particular,

f = p(t)j
l∑

i=0

gi(t)x
i,

where at least one gi(t) is not divisible by p(t).

Let u, v be nonzero elements of R[[y; d]]; we need to show that uv 6= 0. We
can write

u =
∞∑
i=0

aiy
i and v =

∞∑
i=0

biy
i,

where each ai, bi ∈ K[t][x]. Arguing as above, there exist largest integers
n,m ≥ 0 such that we can rewrite u and v as

u = p(t)n
∞∑
i=0

ai
∗yi and v = p(t)m

∞∑
i=0

bi
∗yi,

where ai
∗, bi

∗ ∈ K[t][x] and at least one ai
∗ and at least one bj

∗ cannot have
an additional p(t) factored out. Observe that p(t) is central and not a zero
divisor in R[[y; d]]. Therefore, it we let

u∗ =
∞∑
i=0

ai
∗yi and v∗ =

∞∑
i=0

bi
∗yi,



SKEW POWER SERIES RINGS 11

then uv = 0 if and only if u∗v∗ = 0.

Next, let I be the ideal of R[[y; d]] generated by p(t). Since [y, x] = d(x) ∈ I,
the image of y is central in the quotient ring (R[[y; d]])/I. If we let L denote
the field K[t]/(p(t)), then it is easy to see that (R[[y; d]])/I is isomorphic to
L[x][[y]]. Thus (R[[y; d]])/I is a domain as it is an ordinary power series over
the commutative domain L[x]. Since at least one coefficient of both u∗ and
v∗ are not divisible by p(t), their images in (R[[y; d]])/I are both nonzero.
Therefore

(u∗ + I)(v∗ + I) 6= 0

in (R[[y; d]])/I. This tells us that the product u∗v∗ is certainly nonzero in
R[[y; d]]. Hence uv 6= 0 in R[[y; d]] and so, R[[y; d]] is a domain.

�

The next example will illustrate some of the differences between characteris-
tic p and characteristic 0 for ordinary derivations. In the characteristic 0 case,
it was shown in the first part of Theorem 4 that if d is a locally nilpotent,
surjective derivation such that R[[y; d]] was prime, then R needed to be prime.
However, as we shall soon see, this is certainly not the case in characteris-
tic p > 0 as we exhibit an algebra R which is not semiprime, yet R[[y; d]] is
primitive.

Example 7. A commutative algebra R in characteristic p > 0 with a nil ideal
of codimension 1 and a locally nilpotent, surjective derivation d such that Rd

is a field, R[y; d] is simple, and R[[y; d]] is primitive but not simple.

Proof. Let K be a field of characteristic p > 0 and let R be the K-algebra
generated by the commuting variables x0, x1, x2, . . . such that xi

p = 0, for all
i ≥ 0. It is clear that R is commutative with a nil ideal of codimension 1.
Next, define the derivation d as d(x0) = 1 and d(xi+1) = x0

p−1x1
p−1 · · ·xip−1,

for all i ≥ 0.

It then follows that if j0 ≥ 1, then

d(x0
j0x1

j1 · · ·xmjm) = j0x0
j0−1x1

j1 · · · xmjm ,

and if 0 < i1 < · · · < im with j1 ≥ 1, then

d(xi1
j1xi2

j2 · · ·ximjm) = j1x0
p−1x1

p−1 · · ·xi1−1p−1xi1j1−1xi2j2 · · ·ximjm .

Another way to look at this is, if n ∈ N, let

n = i0 + i1 · p+ i2 · p2 + · · ·+ im · pm,
be the p-adic expansion of n and let ∆n be the monomial

∆n = x0
i0x1

i1 · · ·xmim .

Then d(∆n) = β∆n−1, where β is a nonzero element of K.

It is now easy to see that d is locally nilpotent, d is surjective, Rd = K,
and R is d-simple. Therefore Rd is a field and R[y; d] is simple. Furthermore,
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Theorem 1 asserts that R[[y; d]] is the entire ring of K-linear transformations
of R, hence R[[y; d]] is primitive.

�

3. Derivations - The General Case

In Section 2, we examined the close relationship between the structure of
Rd and that of R[[y;σ, d]] when d is a locally nilpotent, surjective q-skew
σ-derivation. In particular, Corollary 2 asserted that R[[y;σ, d]] is prime or
semiprime if and only if Rd has the same properties. It is now natural to
wonder if this remains true if we no longer assume that d is surjective. Our
next example shows that if d is an ordinary locally nilpotent derivation which
is not surjective, then it is possible for R[[y; d]] to be prime even when Rd is
not semiprime.

Example 8. A prime algebra R of arbitrary characteristic with a derivation d
such that d3 = 0, R[y; d] and R[[y; d]] are both prime, yet Rd is not semiprime.

Proof. Let R be any prime algebra which is not a domain and let a be a nonzero
element of R such that a2 = 0. If d is the inner derivation of R induced by a,
then d3 = 0. Furthermore, since a is central in Rd, it follows that Rd is not
semiprime.

In both R[y; d] and R[[y; d]], we can let Y = y − a. Then Y is central in
both R[y; d] and R[[y; d]], furthermore

yn = ((y − a) + a)n = (y − a)n + na(y − a)n−1 = Y n + naY n−1.

Therefore the series
∑∞

i=0 biy
i can be rewritten as
∞∑
i=0

(bi + (i+ 1)a)Y n.

As a result, R[y; d] = R[Y ] and R[[y; d]] = R[[Y ]]. Since R[Y ] and R[[y]] are
an ordinary polynomial ring and an ordinary power series over the prime ring
R, it is immediate that R[y; d] and R[[y; d]] are both prime.

�

For most of this section, we will restrict our attention to ordinary deriva-
tions. In the main result of this section, we will show that one direction of
Corollary 2 still holds for locally nilpotent derivations, even if d is not sur-
jective. In particular, we will show that if Rd is prime or semiprime, then so
is R[[y; d]]. In showing this, we will need to pay close attention to the case
where d is nilpotent, which is clearly a situation which does not arise when d
is surjective. We begin with

Lemma 9. Let R be an algebra with a locally nilpotent derivation d and, for
every t ≥ 0, let At = {dt(r) | r ∈ ker dt+1}.
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(1) If dt(R) 6= 0, then At is a nonzero ideal of Rd.
(2) If R has characteristic 0, Rd is semiprime, and dn(L) = 0 where L 6= 0

is a d-stable left ideal of R, then d(LR) = 0.
(3) If R has characteristic p > 0, Rd is semiprime, and dn(L) = 0 where

L 6= 0 is a d-stable left ideal of R, then the index of nilpotence of d on
both L and LR is pl, for some l ≥ 0.

Proof. Since d is locally nilpotent, if dt 6= 0 there exists r ∈ R such that
dt+1(r) = 0 and 0 6= dt(r) ∈ At. Thus At is nonzero. It is easy to see that if
r ∈ ker dt+1 and a ∈ Rd, then ar, ra ∈ ker dt+1. Furthermore,

adt(r) = dt(ar) and dt(r)a = dt(ra).

Thus adt(r), dt(r)a ∈ At and so, At is an ideal of Rd, thereby proving part (1).

For part (2), we may assume that n is the index of nilpotence of d on L. If
n > 1, we have

0 = dn(Ldn−2(L)) = ndn−1(L)dn−1(L).

However, in this situation, dn−1(L) is a nonzero left ideal of the semiprime
algebra Rd in characteristic 0, which leads to the contradiction ndn−1(L)·
dn−1(L) 6= 0. As a result, n = 1 which implies that

0 = d(RL) = d(R)L.

However, this tells us that

(Ld(R))2 = Ld(R)Ld(R) = 0.

Therefore Ld(R) is a d-stable ideal of R of square 0. We claim that Ld(R) =
0. If this is not the case, then since d is locally nilpotent, it follows that
Ld(R) ∩ Rd 6= 0. But Ld(R) ∩ Rd is a nonzero left ideal of square zero in the
semiprime ring Rd, a contradiction. Thus Ld(R) = 0 and we now have

d(LR) = d(L)R + Ld(R) = 0,

proving (2).

For part (3), we may assume that n is the index of nilpotence of d and we
can write n = plm, where p does not divide m. We will first show that m = 1.
By way of contradiction, if m > 1, we can let δ = dp

l
. Then δ is a derivation

such that δm(L) = 0. This implies that

0 = δm(Lδm−2(L)) = mδm−1(L)δm−1(L).

Observe that pl(m−1) ≤ plm−1 = n−1. Combining this with that fact that
L is d-stable, we have dn−1(L) ⊆ δm−1(L). This tells us that

mdn−1(L)dn−1(L) = 0.

However this is a contradiction as dn−1(L) is a nonzero left ideal of the semiprime
algebra Rd and the characteristic does not divide m. Thus n = pl.
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The remainder of the proof is very similar to the argument in part (2).
Observe that since n = pl, dn is a derivation which vanishes on L. Arguing as
above, Ldn(R) must be zero, otherwise Ldn(R) ∩ Rd would be a nonzero left
ideal of square zero in the semiprime ring Rd. Therefore

dp
l

(LR) = dn(LR) = dn(L)R + Ldn(R) = 0,

as required.
�

We can now handle the case where Rd is prime. Observe that if d is locally
nilpotent but not nilpotent then it remains true, as in the surjective case, that
the action of R[[y; d]] on R is faithful.

Theorem 10. Let R be an algebra with a locally nilpotent derivation d such
that Rd is prime. Then the skew power series ring R[[y; d]] is prime. In
addition, if d is not nilpotent then the action of R[[y; d]] on R is faithful.

Proof. We first consider the case where d is not nilpotent. If J 6= 0 is an ideal
of R[[y; d]], let

w = aty
t + at+1y

t+1 + · · ·
be an element of J , where each ai ∈ R and at 6= 0. Observe that

[y, w] = d(at)y
t + d(at+1)y

t+1 + · · ·

and

[y, [y, w]] = d2(at)y
t + d2(at+1)y

t+1 + · · ·
are also elements of J . Therefore, by starting with w and continuing to bracket
with y, we can produce an element of J where the coefficient of yt is a nonzero
element of Rd. Hence, without loss of generality, we may assume that w has
been chosen so that 0 6= at ∈ Rd.

If we let w act on elements of ker dt+1, we obtain

w(ker dt+1) = atAt.

By Lemma 9(1), At is a nonzero ideal of the prime ring Rd. Thus atAt 6= 0. In
particular, w does not vanish on all of R. As a result, given any nonzero ideal
of R[[y; d]], we can produce an element in the ideal which does not vanish on
R. Hence the action of R[[y; d]] is faithful on R.

Now suppose I, J are nonzero ideals of R[[y; d]]. Arguing as above, we may
assume that there exist v ∈ I, w ∈ J such that

v = bsy
s + bs+1y

s+1 + · · ·

and

w = aty
t + at+1y

t+1 + · · · ,
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where the coefficients of v and w belong to R and bs, at are nonzero elements
of Rd. If we let r1 ∈ ker ds+1 and r2 ∈ ker dt+1, then vr1w ∈ IJ . When we
let this element act on r2, we obtain

vr1w(r2) = vr1(w(r2)) = vr1(atd
t(r2)) = v(r1atd

t(r2))

= bsd
s(r1atd

t(r2)) = bsd
s(r1)atd

t(r2)

∈ bsAsatAt 6= 0.

Since bsAsatAt 6= 0, we can choose r1, r2 such that vr1w(r2) 6= 0. But this
tells us that vr1w 6= 0, hence IJ 6= 0. Thus R[[y; d]] is prime.

It remains to consider the case where d is nilpotent. If R has characteristic
0, then Lemma 9(2) asserts that d = 0. Therefore R = Rd and R[[y; d]] is an
ordinary power series over a prime ring. Hence R[[y; d]] is prime. Therefore,
we may now assume that R has characteristic p > 0. Lemma 9(3) now tells us
that the index of nilpotence is pl, where l ≥ 0. Let I, J be nonzero ideals of
R[[y; d]]. We may once again assume that there exist v ∈ I, w ∈ J such that

v = bsy
s + bs+1y

s+1 + · · ·
and

(3) w = aty
t + at+1y

t+1 + · · · ,
where the coefficients of v and w belong to R and bs, at are nonzero elements
of Rd.

Since the characteristic is p and dp
l

= 0, the element yp
l

is both central and
regular in R[[y; d]]. If s and t are the integers in (3), we can apply the division
algorithm and divide each of them by pl to obtain

s = q1p
l + s1 and t = q2p

l + s2,

where 0 ≤ s1, t1 < pl. We can now factor yq1p
l

out of v and yq2p
l

out of w in
(3) to obtain,

v = yq1p
l

v1 and w = yq2p
l

w1,

where
v1 = bsy

s1 + bs+1y
s1+1 + · · ·

and
w1 = aty

t1 + at+1y
t1+1 + · · · .

Now let r1 ∈ ker ds1+1 and r2 ∈ ker dt1+1; if we let v1r1w1 act on r2, we
obtain

v1r1w1(r2) = v1r1(w1(r2)) = v1r1(atd
t1(r2)) = v1(r1atd

t1(r2))

= bsd
s1(r1atd

t1(r2)) = bsd
s1(r1)atd

t1(r2) ∈ bsAs1atAt1 .

Since both s1 and t1 are less than pl, Lemma 9(1) tells us that As1 and At1 are
nonzero ideals of the prime ring Rd. Therefore, bsAs1atAt1 6= 0, thus we can
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choose r1, r2 such that v1r1w1(r2) 6= 0. Combining the facts that v1r1w1 6= 0

and yp
l

is both central and regular, it follows that

vr1w = (yq1p
l

v1)r1(y
q2plw1) = y(q1+q2)pl(v1r1w1) 6= 0.

Since vr1w ∈ IJ , we see that IJ 6= 0. Hence R[[y; d]] is prime, thereby
concluding the proof.

�

In order to deal with semiprime rings, we also need

Lemma 11. Let w = aty
t+at+1y

t+1+· · · ∈ R[[y; d]], where each ai ∈ R and at
is a nonzero element of Rd. If Rd is semiprime and atAt 6= 0, then wRw 6= 0.
Therefore, if I is an ideal of R[[y; d]] and w ∈ I, then I2 6= 0.

Proof. Observe that atAt is a nonzero right ideal of Rd. Since Rd is semiprime,
we know that

atAtatAt 6= 0.

Therefore there exist r1, r2 ∈ ker dt+1 such that

atd
t(r1)atd

t(r2) 6= 0.

If we let the element wr1w ∈ R[[y; d]] act on r2 ∈ R, then we obtain

wr1w(r2) = wr1(atd
t(r2)) = w(r1atd

t(r2)) = atd
t(r1)atd

t(r2) 6= 0.

Thus wr1w 6= 0 and hence wRw 6= 0.
�

We can now prove the main result of this section.

Theorem 12. Let R be an algebra with a locally nilpotent derivation d. If Rd

is semiprime, then the skew power series ring R[[y; d]] is semiprime.

Proof. If I 6= 0 is an ideal of R[[y; d]], let w = aty
t+at+1y

t+1+ · · ·+ ∈ I, where
each ai ∈ R and at is a nonzero element of Rd. By Lemma 11, if atAt 6= 0,
then I2 6= 0. Therefore, it suffices to consider the case where atAt = 0. In this
situation, we can let L = {r ∈ R | rAt = 0} and observe that L is a d-stable
left ideal of R which contains at.

If dt(L) 6= 0 then the fact the L is d-stable implies that there exists r ∈ L
such that dt(r) 6= 0 and dt+1(r) = 0. Thus

0 6= dt(r) ∈ L ∩ At.

Therefore L ∩ At is a nonzero left ideal of Rd such that

(L ∩ At)
2 ⊆ LAt = 0,

contrary to the fact that Rd is semiprime. As a result, we may now assume
that dt(L) = 0.

If we let M = LR, then since Rd is semiprime, we have

0 6= atR
dat ⊆ LRat = Mat.
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Since Mat 6= 0 and L is d-stable, MI is a nonzero ideal of R[[y; d]] contained
in I and it would suffice to show that (MI)2 6= 0. Therefore, without loss of
generality, we may assume that I ⊆M [[y; d]].

If we are in the characteristic 0 case, then Lemma 9(2) asserts that since
dt(L) = 0, we have d(M) = 0. In this situation, y commutes with all the
coefficients in w. Since Rd is semiprime, there exists r ∈ Rd such that atrat 6=
0. We now have

wrw = (aty
t + at+1y

t+1 + · · · )r(atyt + at+1y
t+1 + · · · )

= atraty
2t + (at+1rat + atrat+1)y

2t+1 + · · · 6= 0.

Therefore

0 6= wrw ∈ I2,

hence I2 6= 0, as desired.

In light of the above, the only situation left to consider is where dt(L) = 0

and R has characteristic p > 0. By Lemma 9(3), dp
l−1

(L) = dp
l−1

(M) = 0, for

l ≥ 1 such that pl−1 ≤ t < pl. Therefore, replacing w by wyp
l−t we can now

write w as

w = aply
pl + apl+1y

pl+1 + · · · .

However, since dp
l
(M) = 0, it follows that yp

l
commutes with all the coeffi-

cients of w. Therefore,

w = yp
l

w1 = w1y
pl ,

where

w1 = apl + apl+1y + apl+2y
2 + · · · .

Since Rd is semiprime,

aplA0 = aplR
d 6= 0.

Therefore, Lemma 11 tells us that

w1Rw1 6= 0.

However, yp
l

is regular in R[[y; d]], therefore

0 6= yp
l

(w1Rw1)y
pl = (yp

l

w1)R(w1y
pl) = wRw.

Hence

0 6= wRw ⊆ I2

and I2 6= 0, thereby concluding the proof.
�
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