ACTIONS OF LIE SUPERALGEBRAS ON SEMIPRIME ALGEBRAS WITH CENTRAL INVARIANTS

Piotr Grzeszczuk^{†*} and Małgorzata Hryniewicka [‡]

[†]Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland E-mail: piotrgr@pb.edu.pl

[‡]Institute of Mathematics, University of Białystok, Akademicka 2, 15-267 Białystok, Poland E-mail: margitt@math.uwb.edu.pl

Abstract

Let R be a semiprime algebra over a field \mathbb{K} of characteristic zero acted finitely on by a finite dimensional Lie superalgebra $L=L_0\oplus L_1$. It is shown that if L is nilpotent, $[L_0,L_1]=0$ and the subalgebra of invariants R^L is central, then the action of L_0 on R is trivial and R satisfies the standard polynomial identity of degree $2\cdot [\sqrt{2^{\dim_{\mathbb{K}} L_1}}]$. Examples of actions of nilpotent Lie superalgebras with central invariants and with $[L_0,L_1]\neq 0$, are constructed.

1 Preliminaries

If R is an algebra over a field \mathbb{K} of characteristic $\neq 2$ and σ is a \mathbb{K} -linear automorphism of R such that $\sigma^2 = 1$, let $D_0 = \{\delta \in \operatorname{End}_{\mathbb{K}}(R) \mid \delta(rs) = \delta(r)s + r\delta(s) \text{ and } \delta\sigma(r) = \sigma\delta(r) \text{ for all } r, s \in R\}$ and $D_1 = \{\delta \in \operatorname{End}_{\mathbb{K}}(R) \mid \delta(rs) = \delta(r)s + \sigma(r)\delta(s) \text{ and } \delta\sigma(r) = -\sigma\delta(r) \text{ for all } r, s \in R\}$. Then $D_0 \oplus D_1$ is a Lie superalgebra and the elements of D_0 and D_1 are respectively, derivations and skew derivations of R. The superbracket on $D_0 \oplus D_1$ is defined as $[\delta_1, \delta_2] = \delta_1 \delta_2 - (-1)^{ij} \delta_2 \delta_1$, where $\delta_1 \in D_i$, $\delta_2 \in D_j$ and $i, j \in \{0, 1\}$. If $L = L_0 \oplus L_1$ is a Lie superalgebra, we say that L acts on R if there is a homomorphism of Lie superalgebras $\psi \colon L \to D_0 \oplus D_1$, where $\psi(L_i) \subseteq D_i$, for i = 0, 1. Throughout the paper we will simply assume that $L \subseteq D_0 \oplus D_1$ identifying the elements of L_0 and L_1 with their images under ψ . It is well known that the homomorphism ψ induces an associative homomorphism from the universal enveloping algebra U(L) to $\operatorname{End}_{\mathbb{K}}(R)$ and its image is finite dimensional if and only if the derivations and skew derivations from L_0 and L_1 are algebraic. In this case we will say that L acts **finitely** on R. Letting G be the group $\{1, \sigma\}$, we can form the skew group ring H = U(L) * G and H is now a Hopf algebra acting on R. When L acts on R, we define the subalgebra of invariants

^{*}The first author's research was supported in part by KBN Grant No. 1 P03A 032 27 and by the grant S/WI/3/2009 of Bialystok University of Technology.

 R^L to be the set $\{r \in R \mid \delta(r) = 0, \text{ for all } \delta \in L\}$. Depending upon the context, the symbol $[\ ,\]$ may represent either the superbracket on L, or the commutator map [r,s]=rs-sr, where r,s belong to an associative algebra. Inductively, we let $L^1=L$ and $L^{n+1}=[L^n,L]$ and we say that L is nilpotent if there exists a positive integer N such that $L^N=0$. If R (resp. L) is an associative algebra (resp. Lie superalgebra) we will let $\mathcal{Z}(R)$ (resp. $\mathcal{Z}(L)$) denote its center. For an element $a \in R$, and automorphism σ of R, ad_a (resp. ∂_a) stands for the inner derivation (inner σ -derivation) adjoint to a, i.e., $\mathrm{ad}_a(x)=ax-xa$ ($\partial_a(x)=ax-\sigma(x)a$).

2 Main result

The main aim of this paper is to prove the following theorem.

Theorem 1. Let a finite dimensional nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts finitely on a semiprime \mathbb{K} -algebra R, where \mathbb{K} is a field of characteristic zero. If R^L is central and $[L_1, L_0] = 0$, then R satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{\mathbb{K}} L_1}}]$.

It generalizes a result from [1] concerning the actions of nilpotent Lie algebras of characteristic zero on semiprime algebras. On the other hand, in [4] it is proved that if a pointed Hopf algebra H acts finitely of dimension N on a semiprime algebra R and the action is such that $L^H \neq 0$ for any nonzero H-stable left ideal L of R and $R^H \subseteq \mathcal{Z}(R)$, then R satisfies PI of degree $2[\sqrt{N}]$. In Theorem 1 we prove for nilpotent Lie superalgebras with $[L_0, L_1] = 0$, that the dimension of the action of U(L) * G depends only on the dimension of L_1 . The key role will be played by the following easy observation: In characteristic zero the invariants of nilpotent Lie algebras acting on central simple algebras are never proper simple central subalgebras.

Lemma 2. Let R be a finite dimensional central simple \mathbb{F} -algebra acted on by a nilpotent Lie \mathbb{F} -algebra L, where \mathbb{F} is a field of characteristic zero. If R^L is a central simple \mathbb{F} -algebra, then $R = R^L$. In this case the action of L on R must be trivial.

Proof: Since L acts by \mathbb{F} -linear transformations, any derivation from L is inner. Suppose that the action of L on R is not trivial. Then we can take a nonzero derivation $\delta = \operatorname{ad}_a \in \mathcal{Z}(L)$, where $a \in R$. For any $\operatorname{ad}_b \in L$ we have $\operatorname{ad}_{[a,b]} = [\operatorname{ad}_a,\operatorname{ad}_b] = 0$, so $[a,b] \in \mathcal{Z}(R) = \mathbb{F}$. If $[a,b] = \lambda \neq 0$, then $[a,\lambda^{-1}b] = 1$. Note that the elements a and $\lambda^{-1}b$ generate in R a subalgebra isomorphic to the Weyl algebra $A_1(\mathbb{F})$, but it is impossible since R is finite dimensional. Consequently, [a,b] = 0 for any $\operatorname{ad}_b \in L$ and hence $a \in R^L$. In particular, ad_a acts trivially on $C_R(R^L)$, the centralizer of R^L in R. On the other hand the subalgebra R^L is simple and $\mathcal{Z}(R^L) = \mathbb{F}$, so by Theorem 2 (p. 118) in [5] $R \simeq R^L \otimes_{\mathbb{F}} C_R(R^L) \simeq R^L \cdot C_R(R^L)$. Consequently, $R = R^L \cdot C_R(R^L)$. It implies that ad_a acts trivially on R, a contradiction. Therefore the action of L on R is trivial.

Suppose that a finite dimensional nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts finitely of dimension N on an algebra R. Then by R_{L_0} we denote the largest subspace

of R on which any derivation from L_0 acts nilpotently, that is

$$R_{L_0} = \{ r \in R \mid \delta^N(r) = 0, \ \forall \delta \in L_0 \}.$$

It is clear that R_{L_0} is a subalgebra of R and R_{L_0} is stable under the automorphism σ . Furthermore, it is well known that (after eventual extension of the field of scalars) the algebra R is graded (with finite support) by the dual of the Lie algebra L_0 with R_{L_0} as the identity component of the grading. Therefore, if the algebra R is semiprime (semisimple), then R_{L_0} is also semiprime (resp. semisimple). In [3] (Lemma 12) it is proved that

Lemma 3. The subalgebra R_{L_0} is L-stable. In particular L acts on R_{L_0} by nilpotent transformations.

In the next Proposition we consider the case of action of a nilpotent Lie superalgebra on a finite dimensional G-simple algebra.

Proposition 4. Let a nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts on a G-simple finite dimensional \mathbb{K} -algebra R, where \mathbb{K} is a field of characteristic zero. If R^L is central and $[L_0, L_1] = 0$, then $L_0 = 0$.

Proof: First we will consider the case when L acts on R by nilpotent transformations, that is $R = R_{L_0}$. Suppose that $L_0 \neq 0$ and take a nonzero derivation δ from the center of L_0 . Since $[L_0, L_1] = 0$, it is clear that δ is in the center of L. Let k > 1 be such that $\delta^k(R) = 0$ and $V = \delta^{k-1}(R) \neq 0$. Then V is invariant under the action of L, and since L acts via nilpotent transformations it is clear that $V^L = V \cap R^L \subseteq \mathcal{Z}(R)$. On the other hand if $r, s \in R$, then the Leibniz rule gives

$$0 = \delta^k(\delta^{k-2}(r)s) = k\delta^{k-1}(r)\delta^{k-1}(s).$$

It means that $(V^L)^2 = 0$, so the center of R contains nilpotent elements. This is impossible since R is semisimple. The obtained contradiction shows that $L_0 = 0$.

Consider the general case. The above gives us immediately that $R^{L_0} = R_{L_0}$ and consequently the algebra R^{L_0} is semisimple. Thus, any its ideal I is idempotent, i.e., $I^2 = I$. Note that if I is G-stable, then the Leibniz rule, applied to any $\partial \in L_1$, gives $\partial(I) = \partial(I^2) \subseteq \partial(I)I + \sigma(I)\partial(I) \subseteq I$. Hence any G-stable ideal I of R^{L_0} is also L-stable and $0 \neq I^L \subseteq \mathcal{Z}(R)$. Thus I contains invertible elements. Consequently, R^{L_0} is also G-simple.

We will split considerations into two cases. First suppose that the automorphism σ is inner, and let $q \in R$ be such that $\sigma(x) = q^{-1}xq$, for $x \in R$. In this case any ideal of R is σ -stable, so R must be a simple algebra. Moreover it is easy to see that any skew derivation ∂ from L_1 must be inner. Indeed, since $\partial \sigma = -\sigma \partial$, we obtain that

$$q^{-1}\partial(x)q = \sigma(\partial(x)) = -\partial(\sigma(x)) = -\partial(q^{-1}xq) =$$
$$= -\partial(q^{-1})xq - q^{-1}\partial(x)q - q^{-1}\sigma(x)\partial(q).$$

Since $q\partial(q^{-1}) = -\partial(q)q^{-1}$,

$$\partial(x) = -\frac{1}{2}q\partial(q^{-1})x - \frac{1}{2}\sigma(x)\partial(q)q^{-1} = \frac{1}{2}\partial(q)q^{-1}x - \sigma(x)\frac{1}{2}\partial(q)q^{-1}.$$

This immediately gives, that $\partial(x) = bx - \sigma(x)b$, where $b = \frac{1}{2}\partial(q)q^{-1}$. Consequently, any mapping from $L_0 \cup L_1$ is $\mathcal{Z}(R)$ -linear. We will show that the algebra R^{L_0} is simple and the centers of R^{L_0} and R coincide. Since the automorphism σ has order two, $q^2 \in \mathcal{Z}(R)$. Thus for any $\delta = \mathrm{ad}_a \in L_0$,

$$\delta(q) = \delta(\sigma(q)) = \sigma(\delta(q)) = q^{-1}(aq - qa)q = qa - aq = -\delta(q),$$

so $\delta(q)=0$. This implies that $q\in R^{L_0}$, the restriction of σ to R^{L_0} is inner and hence the algebra R^{L_0} is simple. Since the action of L on R is inner, $\mathcal{Z}(R)=\mathcal{Z}(R)\cap R^{L_0}\subseteq \mathcal{Z}(R^{L_0})$. We will show that $\mathcal{Z}(R^{L_0})\subseteq \mathcal{Z}(R)$. To this end, since $R^L\subseteq \mathcal{Z}(R)$, it suffices to show that $\mathcal{Z}(R^{L_0})\subseteq R^{L_1}$. Take any $z\in \mathcal{Z}(R^{L_0})$, and $\partial=\partial_b\in L_1$, where $b=\frac{1}{2}\partial(q)q^{-1}$. Notice that $b\in R^{L_0}$. Indeed, by assumption $[\delta,\partial]=0$ for any $\delta\in L_0$ and by the above $q\in R^{L_0}$, so

$$\delta(b) = \frac{1}{2}\delta(\partial(q)q^{-1}) = \frac{1}{2}\delta(\partial(q))q^{-1} + \frac{1}{2}\partial(q)\delta(q^{-1}) = \frac{1}{2}\partial(\delta(q))q^{-1} = 0.$$

It means that $b \in R^{L_0}$ and

$$\partial(z) = bz - \sigma(z)b = bz - zb = 0,$$

so $z \in R^{L_1}$. It proves that $\mathcal{Z}(R^{L_0}) = \mathcal{Z}(R)$. By Lemma 2 the action of L_0 on R must be trivial.

Finally suppose that the automorphism σ is outer. Since R is G-simple, the algebra R must be either simple or $R = I \oplus \sigma(I)$ for some minimal ideal I. In the first case, by the Skolem-Noether Theorem, σ is not an identity map on $\mathcal{Z}(R)$. In the second case $\mathcal{Z}(R) = \mathcal{Z}(I) \oplus \sigma(\mathcal{Z}(I))$. Thus in both cases σ acts non identically on $\mathcal{Z}(R)$. Now since the center of R^{L_0} contains $\mathcal{Z}(R)$, the restriction of σ to R^{L_0} is also outer. Consequently, one can choose a nonzero element $c \in \mathcal{Z}(R)$ such that $\sigma(c) \neq c$. Then $(c - \sigma(c))^2$ is nonzero and belongs to the field $\mathcal{Z}(R)^{\sigma}$. Thus $c - \sigma(c)$ is invertible. Now let $\partial \in L_1$ and $x \in R$. Notice that

$$\partial(x)c + \sigma(x)\partial(c) = \partial(xc) = \partial(cx) = \partial(c)x + \sigma(c)\partial(x).$$

In particular, we have

$$\partial(x) = (c - \sigma(c))^{-1}\partial(c)x - \sigma(x)(c - \sigma(c))^{-1}\partial(c) = \partial_b(x),$$

where $b = (c - \sigma(c))^{-1}\partial(c)$. Thus L_1 acts on R via inner σ -derivations and in particular every mapping from L is $\mathcal{Z}(R)^{\sigma}$ -linear. We will prove that $\mathcal{Z}(R^{L_0})^{\sigma} = \mathcal{Z}(R)^{\sigma}$. Similarly as above, it suffices to show that $\mathcal{Z}(R^{L_0})^{\sigma} \subseteq R^{L_1}$. Take any $\partial = \partial_b \in L_1$, where $b = (c - \sigma(c))^{-1}\partial(c)$ for some $c \in \mathcal{Z}(R)$. Since L_0 acts trivially on the center of R, one obtains that $b \in R^{L_0}$. Now it is clear that ∂_b acts trivially on $\mathcal{Z}(R^{L_0})^{\sigma}$, and consequently $\mathcal{Z}(R^{L_0})^{\sigma} \subseteq R^{L_1}$.

Consider skew group rings R * G and $R^{L_0} * G$. Since both of R and R^{L_0} are G-simple, and σ is outer on R and R^{L_0} , the rings R * G and $R^{L_0} * G$ are simple. Moreover it is clear that $\mathcal{Z}(R * G) = \mathcal{Z}(R)^{\sigma}$ and $\mathcal{Z}(R^{L_0} * G) = \mathcal{Z}(R^{L_0})^{\sigma}$. Thus R * G and $R^{L_0} * G$ are central simple $\mathcal{Z}(R)^{\sigma}$ -algebras. Notice that the action of L_0 on R can be extended to an action on R * G, via the formula $\delta(a + b\sigma) = \delta(a) + \delta(b)\sigma$. In that case $(R * G)^{L_0} = R^{L_0} * G$ Again applying Lemma 2 we obtain that L_0 must act trivially on R and the proof is complete.

Corollary 5. Let a nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts on a G-simple finite dimensional \mathbb{K} -algebra R with center \mathcal{Z} , where char $\mathbb{K} = 0$. If $R^L \subseteq \mathcal{Z}$ and $[L_0, L_1] = 0$, then $\dim_{\mathcal{Z}^G} R \leq [\mathcal{Z} : \mathcal{Z}^G] \cdot 2^{\dim_{\mathbb{K}} L_1}$. Moreover, in this case R satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{\mathbb{K}} L_1}}]$.

Proof: By Proposition 4, $L_0 = 0$. Thus L is spanned by a family $\{\partial_1, \ldots, \partial_n\}$ of inner skew derivations such that $\partial_j^2 = 0$ and $\partial_i \partial_j + \partial_j \partial_i = 0$. It is clear that every ∂_j is \mathcal{Z}^G -linear. Let us consider a chain

$$V_0 = R \supset V_1 \supset \cdots \supset V_n$$

of subspaces of R, where $V_j = \ker \partial_1 \cap \cdots \cap \ker \partial_j$ for $j = 1, \ldots, n$. Then $V_n \subseteq R^L \subseteq \mathcal{Z}$ and ∂_j maps V_{j-1} into V_j . Moreover, it is clear that $\dim_{\mathcal{Z}^G} V_{j-1} = \dim_{\mathcal{Z}^G} (\ker \partial_j \cap V_{j-1}) + \dim_{\mathcal{Z}^G} \partial_j (V_{j-1}) \leq 2 \cdot \dim_{\mathcal{Z}^G} V_j$. Thus

$$\dim_{\mathcal{Z}^G} R \leq 2^n \cdot \dim_{\mathcal{Z}^G} V_n \leq [\mathcal{Z} : \mathcal{Z}^G] \cdot 2^{\dim_{\mathbb{K}} L_1}.$$

Since R is G-simple, the algebra R must be either simple or $R = I \oplus \sigma(I)$ for a minimal ideal I of R. Then I is certainly a simple algebra. The above inequality implies that $\dim_{\mathcal{Z}} R \leq 2^{\dim_{\mathbb{K}} L_1}$ in the first case, and $\dim_{\mathcal{Z}(I)} I \leq 2^{\dim_{\mathbb{K}} L_1}$ in the second case. The result follows now by the Amitsur-Levitzki Theorem.

If R is semiprime we let Q = Q(R) to denote the symmetric Martindale quotient ring. Its center, known as the extended centroid of R, we denote by C. The following properties of Q in the case when R is acted on by a Hopf algebra are proved in [3].

Lemma 6. Let R be a semiprime H-module algebra such that the H-action on R extends to an H-action on Q and any nonzero H-stable ideal of R contains nontrivial invariants. Then

- 1. the ring $C^H = C \cap Q^H$ is von Neumann regular and selfinjective.
- 2. If a nonempty subset $S \subseteq C^H \setminus \{0\}$ is closed under a multiplication, then the localization Q_S of Q at S is semiprime and $\mathcal{Z}(Q_S) = C_S$.
- 3. If H acts finitely on Q and $S = C^H \setminus M$, where M is a maximal ideal of C^H , then the H-action on Q extends to an H-action on Q_S and $(Q^H)_S = (Q_S)^H$, $(C^H)_S = (C_S)^H = C_S \cap (Q_S)^H$ is a field contained in the center of Q_S .

We can now prove the main result of the paper.

Proof of Theorem 1: Let H = U(L) * G. By ([2], Corollary 6) every H-invariant non-nilpotent subalgebra of R contains nonzero invariants. Thus we can apply the results from [4]. Let M be a maximal ideal of $C^H = C \cap Q^H$ and put $S = C^H \setminus M$. By the above lemma and [4] it follows that $(C_S)^H$ is a field and Q_S is a finite dimensional, G-simple $(C_S)^H$ -algebra. Using Corollary 5 we obtain that Q_M satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{\mathbb{K}} L_1}}]$. Since it holds for any maximal ideal M of C^H , the ring Q, and consequently R, satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{\mathbb{K}} L_1}}]$.

3 Examples

In this section we construct examples of actions of nilpotent Lie superalgebras with central invariants and with $[L_0, L_1] \neq 0$. We start with general properties of inner derivations and skew derivations of an algebra R with an automorphism σ of order two. Then $R = R_0 \oplus R_1$ is \mathbb{Z}_2 -graded, where $R_0 = \{x \in R \mid \sigma(x) = x\}$ and $R_1 = \{x \in R \mid \sigma(x) = -x\}$. For any inner derivation δ of R, the condition $\delta \sigma = \sigma \delta$ is equivalent to that δ is induced by some $a \in R_0$. To see that, we let δ be induced by $a = a_0 + a_1 \in R$. Then

(1)
$$\delta(x) = ax - xa = (a_0x - xa_0) + (a_1x - xa_1).$$

This immediately implies that

$$\delta(\sigma(x)) = (a_0 \sigma(x) - \sigma(x)a_0) + (a_1 \sigma(x) - \sigma(x)a_1)$$

and

$$\sigma(\delta(x)) = (a_0\sigma(x) - \sigma(x)a_0) - (a_1\sigma(x) - \sigma(x)a_1).$$

Since δ and σ commute, the previous equations imply that $a_1\sigma(x) - \sigma(x)a_1 = 0$. Replacing x by $\sigma(x)$ yields $a_1x - xa_1 = 0$. Equation (1) now becomes

$$\delta(x) = a_0 x - x a_0 = \operatorname{ad}_{a_0}(x).$$

In the same manner we can show that for any inner skew derivation ∂ of R, the condition $\partial \sigma = -\sigma \partial$ is equivalent to that $\partial = \partial_b$ for some $b \in R_1$.

Lemma 7. Let R be an algebra over a field \mathbb{K} of characteristic $\neq 2$ and σ be a \mathbb{K} -linear automorphism of R of order 2. Let $u \in R$ be invertible and $\sigma(u) = -u$. Let \widetilde{R} be the \mathbb{K} -algebra $M_2(R)$, the 2×2 matrices over R. Then the map $\varphi \colon R \to \widetilde{R}$ given by

$$\varphi(x) = \begin{pmatrix} x & 0 \\ 0 & u^{-1}\sigma(x)u \end{pmatrix}$$

is an injective homomorphism of algebras, satisfying $\widetilde{\sigma}\varphi = \varphi\sigma$ (where $\widetilde{\sigma}$ is a componentwise extension of σ to \widetilde{R}).

If a Lie superalgebra $L = L_0 \oplus L_1$ acts on R by inner derivations and inner σ -derivations with $R^L = \mathbb{K}$, then L acts on \widetilde{R} by inner derivations and inner $\widetilde{\sigma}$ -derivations with

$$\widetilde{R}^L = \left\{ \begin{pmatrix} \alpha & \beta u \\ \gamma u^{-1} & \lambda \end{pmatrix} \in \widetilde{R} \mid \alpha, \beta, \gamma, \lambda \in \mathbb{K} \right\}.$$

Proof: Notice that

$$(\widetilde{\sigma}\varphi)(x) = \widetilde{\sigma}(\begin{pmatrix} x & 0 \\ 0 & u^{-1}\sigma(x)u \end{pmatrix}) = \begin{pmatrix} \sigma(x) & 0 \\ 0 & u^{-1}xu \end{pmatrix} = (\varphi\sigma)(x).$$

In order to prove the second part, observe that for all inner derivation $\mathrm{ad}_a \in L_0$ and the inner skew derivation $\partial_b \in L_1$ of R and for every matrix $\widetilde{x} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \in \widetilde{R}$ the following equations hold

$$\mathrm{ad}_{\varphi(a)}(\widetilde{x}) = \begin{pmatrix} a & 0 \\ 0 & u^{-1}au \end{pmatrix} \cdot \widetilde{x} - \widetilde{x} \cdot \begin{pmatrix} a & 0 \\ 0 & u^{-1}au \end{pmatrix} = \begin{pmatrix} \mathrm{ad}_a(x_{11}) & \mathrm{ad}_a(x_{12}u^{-1})u \\ u^{-1} \, \mathrm{ad}_a(ux_{21}) & u^{-1} \, \mathrm{ad}_a(ux_{22}u^{-1})u \end{pmatrix}$$

and

$$\partial_{\varphi(b)}(\widetilde{x}) = \begin{pmatrix} b & 0 \\ 0 & -u^{-1}bu \end{pmatrix} \cdot \widetilde{x} - \widetilde{\sigma}(\widetilde{x}) \cdot \begin{pmatrix} b & 0 \\ 0 & -u^{-1}bu \end{pmatrix} =$$

$$= \begin{pmatrix} \partial_b(x_{11}) & \partial_b(x_{12}u^{-1})u \\ \sigma(u^{-1})\partial_b(ux_{21}) & \sigma(u^{-1})\partial_b(ux_{22}u^{-1})u \end{pmatrix}.$$

¿From the above equations it follows that $\widetilde{x} \in \widetilde{R}^L$ if and only if the elements x_{11} , $x_{12}u^{-1}$, ux_{21} and $ux_{22}u^{-1}$ belong to R^L . Under the assumption that $R^L = \mathbb{K}$, we now easily obtain the assertion of the lemma.

We start our construction from the algebra $R = M_2(\mathbb{K})$ of 2×2 matrices over a field \mathbb{K} of characteristic 0. Let σ be the inner automorphism of order 2 of R induced by the diagonal matrix diag(1,-1) and let ∂_{b_1} and ∂_{b_2} be the inner σ -derivations of R induced by

$$b_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in R_1 \text{ and } b_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in R_1,$$

respectively. It can be easily checked that

$$b_1^2 = -b_2^2 = 1$$
 and $b_1b_2 + b_2b_1 = 0$.

As a result, the skew derivations ∂_{b_1} and ∂_{b_2} span an abelian Lie superalgebra $L = L_0 \oplus L_1$ where $L_0 = 0$ and $L_1 = \operatorname{Span}_{\mathbb{K}} \{\partial_{b_1}, \partial_{b_2}\}$. ¿From the explicit formulas for ∂_{b_1} and ∂_{b_2}

$$\partial_{b_1} \begin{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_{21} + x_{12} & x_{22} - x_{11} \\ x_{11} - x_{22} & x_{21} + x_{12} \end{pmatrix}$$

and

$$\partial_{b_2} \begin{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_{21} - x_{12} & x_{22} - x_{11} \\ x_{22} - x_{11} & x_{21} - x_{12} \end{pmatrix}$$

it follows immediately that $R^L = \mathbb{K}$.

Using Lemma 7, applied to the invertible element $u = b_2$, we have an embedding of R into $\widetilde{R} = M_2(R)$, according to the formula

$$\varphi(x) = \begin{pmatrix} x & 0 \\ 0 & b_2^{-1} \sigma(x) b_2 \end{pmatrix}.$$

Put

$$\widetilde{b_1} = \varphi(b_1) = \begin{pmatrix} b_1 & 0 \\ 0 & b_1 \end{pmatrix} \in \widetilde{R}_1 \text{ and } \widetilde{b_2} = \varphi(b_2) = \begin{pmatrix} b_2 & 0 \\ 0 & -b_2 \end{pmatrix} \in \widetilde{R}_1$$

and consider the additional matrices

$$\widetilde{b_3} = \begin{pmatrix} 0 & b_2 \\ -b_2 & 0 \end{pmatrix} \in \widetilde{R}_1 \text{ and } \widetilde{b_4} = \begin{pmatrix} 0 & b_2 \\ b_2 & 0 \end{pmatrix} \in \widetilde{R}_1.$$

It is not hard to check that

$$\widetilde{b_1}^2 = -\widetilde{b_2}^2 = \widetilde{b_3}^2 = -\widetilde{b_4}^2 = 1$$
 and $\widetilde{b_i}\widetilde{b_j} + \widetilde{b_j}\widetilde{b_i} = 0$

for all $i \neq j$. As before, the inner skew derivations $\partial_{\widetilde{b_1}}$, $\partial_{\widetilde{b_2}}$, $\partial_{\widetilde{b_3}}$ and $\partial_{\widetilde{b_4}}$ span an abelian Lie superalgebra $\widetilde{L} = \widetilde{L}_0 \oplus \widetilde{L}_1$, where $\widetilde{L}_0 = 0$ and $\widetilde{L}_1 = \operatorname{span}_{\mathbb{K}} \{\partial_{\widetilde{b_1}}, \partial_{\widetilde{b_2}}, \partial_{\widetilde{b_3}}, \partial_{\widetilde{b_4}}\}$. Lemma 7 says that the subalgebra of invariants \widetilde{R}^L under the action of L consists of all matrices of the form $\begin{pmatrix} \alpha & \beta b_2 \\ \gamma b_2 & \lambda \end{pmatrix}$ where $\alpha, \beta, \gamma, \lambda \in \mathbb{K}$. Furthermore, a simple calculation shows that

$$\partial_{\widetilde{b_3}}(\begin{pmatrix}\alpha&\beta b_2\\\gamma b_2&\lambda\end{pmatrix})=\begin{pmatrix}\beta-\gamma&(\lambda-\alpha)b_2\\(\lambda-\alpha)b_2&\beta-\gamma\end{pmatrix}$$

and

$$\partial_{\widetilde{b_4}}(\begin{pmatrix}\alpha & \beta b_2\\ \gamma b_2 & \lambda\end{pmatrix}) = \begin{pmatrix}-\beta - \gamma & (\lambda - \alpha)b_2\\ (\alpha - \lambda)b_2 & -\beta - \gamma\end{pmatrix}.$$

This immediately implies that $\widetilde{R}^{\widetilde{L}} = \mathbb{K}$.

Applying Lemma 7 for the invertible element $u=\widetilde{b_4}$ we have the next embedding of \widetilde{R} into the algebra $\mathbf{R}=M_2(\widetilde{R})$, the 2×2 matrices over \widetilde{R} according to the formula

$$\varphi(\widetilde{x}) = \begin{pmatrix} \widetilde{x} & 0 \\ 0 & \widetilde{b_4}^{-1} \widetilde{\sigma}(\widetilde{x}) \widetilde{b_4} \end{pmatrix}.$$

Put

$$B_i = \varphi(\widetilde{b_i}) = \begin{pmatrix} \widetilde{b_i} & 0 \\ 0 & \widetilde{b_i} \end{pmatrix} \in \mathbf{R}_1 \text{ and } B_4 = \varphi(\widetilde{b_4}) = \begin{pmatrix} \widetilde{b_4} & 0 \\ 0 & -\widetilde{b_4} \end{pmatrix} \in \mathbf{R}_1$$

for i = 1, 2, 3 and consider the additional matrices

•
$$A_1 = \begin{pmatrix} 0 & \widetilde{a_1} \\ -\widetilde{a_1} & 0 \end{pmatrix} \in \mathbf{R}_0 \text{ and } C_1 = \begin{pmatrix} 0 & \widetilde{a_1} \\ 0 & 0 \end{pmatrix} \in \mathbf{R}_0, \text{ where } \widetilde{a_1} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \in \widetilde{R}_0,$$

•
$$A_2 = \begin{pmatrix} 0 & \widetilde{a_2} + 1 \\ -\widetilde{a_2} + 1 & 0 \end{pmatrix} \in \mathbf{R}_0 \text{ and } C_2 = \begin{pmatrix} 0 & \widetilde{a_2} + 1 \\ 0 & 0 \end{pmatrix} \in \mathbf{R}_0, \text{ where } \widetilde{a_2} = \begin{pmatrix} 0 & b_1b_2 \\ b_1b_2 & 0 \end{pmatrix} \in \widetilde{R}_0,$$

•
$$A_3 = \begin{pmatrix} \widetilde{a_3} - \widetilde{a_1} & 0 \\ 0 & \widetilde{a_3} + \widetilde{a_1} \end{pmatrix} \in \mathbf{R}_0$$
, where $\widetilde{a_3} = \begin{pmatrix} b_1b_2 & b_1b_2 \\ -b_1b_2 & -b_1b_2 \end{pmatrix} \in \widetilde{R}_0$,

•
$$B_5 = \begin{pmatrix} 0 & \widetilde{d_5} \\ \widetilde{b_5} & 0 \end{pmatrix} \in \mathbf{R}_1, \ B_6 = \begin{pmatrix} 0 & \widetilde{b_4} \\ -\widetilde{b_4} & 0 \end{pmatrix} \in \mathbf{R}_1 \text{ and } B_7 = \begin{pmatrix} 0 & \widetilde{b_4} \\ \widetilde{b_4} & 0 \end{pmatrix} \in \mathbf{R}_1, \text{ where }$$

$$\widetilde{d_5} = \begin{pmatrix} b_1 + b_2 & b_1 + b_2 \\ -b_1 - b_2 & -b_1 - b_2 \end{pmatrix}, \ \widetilde{b_5} = \begin{pmatrix} -b_1 + b_2 & -b_1 + b_2 \\ b_1 - b_2 & b_1 - b_2 \end{pmatrix} \in \widetilde{R}_1,$$

•
$$D_5 = \begin{pmatrix} 0 & \widetilde{d_5} \\ 0 & 0 \end{pmatrix} + B_7 \in \mathbf{R}_1 \text{ and } D_6 = \begin{pmatrix} 0 & \widetilde{b_4} \\ 0 & 0 \end{pmatrix} \in \mathbf{R}_1.$$

Notice that if $\mathbf{N}_0 = \operatorname{span}_{\mathbb{K}} \{ \operatorname{ad}_{C_1}, \operatorname{ad}_{C_2}, \operatorname{ad}_{A_3} \}$ and $\mathbf{N}_1 = \operatorname{span}_{\mathbb{K}} \{ \partial_{B_1}, \partial_{B_2}, \partial_{B_3}, \partial_{B_4}, \partial_{D_5}, \partial_{D_6} \}$, then $\mathbf{N} = \mathbf{N}_0 \oplus \mathbf{N}_1$ is a 9-dimensional Lie superalgebra of nilpotency class 4

(see Table 1). Lemma 7 asserts that the subalgebra of invariants $\mathbf{R}^{\widetilde{L}}$ under the action of \widetilde{L} consists of all matrices of the form $\begin{pmatrix} \alpha & \beta \widetilde{b_4} \\ \gamma \widetilde{b_4} & \lambda \end{pmatrix}$ where $\alpha, \beta, \gamma, \lambda \in \mathbb{K}$. Moreover,

$$\partial_{D_5}\begin{pmatrix} \alpha & \beta \widetilde{b_4} \\ \gamma \widetilde{b_4} & \lambda \end{pmatrix} = \begin{pmatrix} \gamma \widetilde{d_5} \widetilde{b_4} - \beta - \gamma & (\lambda - \alpha)(\widetilde{b_4} + \widetilde{d_5}) \\ (\alpha - \lambda)\widetilde{b_4} & \gamma \widetilde{b_4} \widetilde{d_5} - \beta - \gamma \end{pmatrix} = \\ = \begin{pmatrix} \gamma (\widetilde{a_3} - \widetilde{a_1}) - \beta - \gamma & (\lambda - \alpha)(\widetilde{b_4} + \widetilde{d_5}) \\ (\alpha - \lambda)\widetilde{b_4} & \gamma (\widetilde{a_3} + \widetilde{a_1}) - \beta - \gamma \end{pmatrix}.$$

As a result we obtain that $\mathbf{R}^{\mathbf{N}} = \mathbb{K}$.

Notice also that if $\mathbf{M}_0 = \operatorname{span}_{\mathbb{K}} \{ \operatorname{ad}_{A_1}, \operatorname{ad}_{A_2}, \operatorname{ad}_{A_3} \}$ and $\mathbf{M}_1 = \operatorname{span}_{\mathbb{K}} \{ \partial_{B_1}, \partial_{B_2}, \partial_{B_3}, \partial_{B_4}, \partial_{B_5+B_7}, \partial_{B_6} \}$, then $\mathbf{M} = \mathbf{M}_0 \oplus \mathbf{M}_1$ is a nilpotent Lie superalgebra of nilpotency class 6 (see Table 2). We have

$$\begin{split} \partial_{B_5+B_7}(\begin{pmatrix} \alpha & \beta \widetilde{b_4} \\ \gamma \widetilde{b_4} & \lambda \end{pmatrix}) &= \begin{pmatrix} \gamma \widetilde{d_5} \widetilde{b_4} + \beta \widetilde{b_4} \widetilde{b_5} - \beta - \gamma & (\lambda - \alpha)(\widetilde{b_4} + \widetilde{d_5}) \\ (\alpha - \lambda)(\widetilde{b_4} + \widetilde{b_5}) & \beta \widetilde{b_5} \widetilde{b_4} + \gamma \widetilde{b_4} \widetilde{d_5} - \beta - \gamma \end{pmatrix} = \\ &= \begin{pmatrix} (\gamma - \beta)(\widetilde{a_3} - \widetilde{a_1}) - \beta - \gamma & (\lambda - \alpha)(\widetilde{b_4} + \widetilde{d_5}) \\ (\alpha - \lambda)(\widetilde{b_4} + \widetilde{b_5}) & (\gamma - \beta)(\widetilde{a_3} + \widetilde{a_1}) - \beta - \gamma \end{pmatrix}. \end{split}$$

This implies immediately that $\mathbf{R}^{\mathbf{M}} = \mathbb{K}$.

Finally, observe also that \mathbf{M} is an subalgebra of a nilpotent Lie superalgebra $\mathbf{L} = \mathbf{L}_0 \oplus \mathbf{L}_1$ of nilpotency class 6, where $\mathbf{L}_0 = [\mathbf{L}_1, \mathbf{L}_1] = \operatorname{span}_{\mathbb{K}} \{\operatorname{ad}_{A_1}, \operatorname{ad}_{A_2}, \operatorname{ad}_{A_3}\}$ and $\mathbf{L}_1 = \operatorname{span}_{\mathbb{K}} \{\partial_{B_1}, \partial_{B_2}, \partial_{B_3}, \partial_{B_4}, \partial_{B_5}, \partial_{B_6}, \partial_{B_7}\}$ (see Table 2). Obviously, $\mathbf{R}^{\mathbf{L}} = \mathbb{K}$. Starting with the algebra \mathbf{R} , the invertible element $u = B_7$ and the Lie superalgebra \mathbf{L} , and again applying the above procedure, we can produce successive examples.

$[\cdot,\cdot]$	ad_{C_1}	ad_{C_2}	ad_{A_3}	∂_{B_1}	∂_{B_2}	∂_{B_3}	∂_{B_4}	∂_{D_5}	∂_{D_6}
ad_{C_1}	0	0	0	0	$-2\partial_{D_6}$	$2\partial_{D_6}$	0	$\partial_{B_2+B_3}$	0
ad_{C_2}	0	0	0	$2\partial_{D_6}$	0	0	$2\partial_{D_6}$	$-\partial_{B_1-B_4}$	0
ad_{A_3}	0	0	0		$-2\partial_{B_1-B_4}$	$2\partial_{B_1-B_4}$		0	0
∂_{B_1}	0	$-2\partial_{D_6}$		0	0	0	0	$2\operatorname{ad}_{C_1}$	0
∂_{B_2}	$2\partial_{D_6}$	0	$2\partial_{B_1-B_4}$	0	0	0	0	$-2\operatorname{ad}_{C_2}$	0
∂_{B_3}	$-2\partial_{D_6}$		$-2\partial_{B_1-B_4}$	0	0	0	0	$2\operatorname{ad}_{C_2}$	0
∂_{B_4}	0	$-2\partial_{D_6}$	$2\partial_{B_2+B_3}$	0	0	0	0	$2\operatorname{ad}_{C_1}$	0
∂_{D_5}	$-\partial_{B_2+B_3}$			$2\operatorname{ad}_{C_1}$	$-2\operatorname{ad}_{C_2}$	$2\operatorname{ad}_{C_2}$	$2\operatorname{ad}_{C_1}$	$2\operatorname{ad}_{A_3}$	0
∂_{D_6}	0	0	0	0	0	0	0	0	0

Table 1: operation table of N

$[\cdot,\cdot]$	ad_{A_1}	ad_{A_2}	ad_{A_3}	∂_{B_1}	∂_{B_2}	∂_{B_3}	∂_{B_4}	∂_{B_5}	∂_{B_6}	∂_{B_7}
ad_{A_1}	0	$-2\operatorname{ad}_{A_3}$	0	0	$-2\partial_{B_6}$	$2\partial_{B_6}$	0	0	$-2\partial_{B_2+B_3}$	0
ad_{A_2}	$2 \operatorname{ad}_{A_3}$	0	0	$2\partial_{B_6}$	0	0	$2\partial_{B_6}$	0	$2\partial_{B_1-B_4}$	0
ad_{A_3}	0	0	0	$-2\partial_{B_2+B_3}$	$-2\partial_{B_1-B_4}$	$2\partial_{B_1-B_4}$	$-2\partial_{B_2+B_3}$	0	0	0
∂_{B_1}	0	$-2\partial_{B_6}$	$2\partial_{B_2+B_3}$	0	0	0	0	$2\operatorname{ad}_{A_1}$	0	0
∂_{B_2}	$2\partial_{B_6}$	0	$2\partial_{B_1-B_4}$	0	0	0	0	$-2 \operatorname{ad}_{A_2}$	0	0
∂_{B_3}	$-2\partial_{B_6}$	0	$-2\partial_{B_1-B_4}$	0	0	0	0	$2\operatorname{ad}_{A_2}$	0	0
∂_{B_4}	0	$-2\partial_{B_6}$	$2\partial_{B_2+B_3}$	0	0	0	0	$2\operatorname{ad}_{A_1}$	0	0
∂_{B_5}	0	0	0	$2\operatorname{ad}_{A_1}$	$-2\operatorname{ad}_{A_2}$	$2 \operatorname{ad}_{A_2}$	$2\operatorname{ad}_{A_1}$	0	$-2\operatorname{ad}_{A_3}$	0
∂_{B_6}	$2\partial_{B_2+B_3}$	$-2\partial_{B_1-B_4}$	0	0	0	0	0	$-2 \operatorname{ad}_{A_3}$	0	0
∂_{B_7}	0	0	0	0	0	0	0	0	0	0

Table 2: operation table of \boldsymbol{L}

References

- [1] J. Bergen, P. Grzeszczuk, Invariants of Lie superalgebras acting on associative rings, Israel J. Math. **94** (1996), 403–428.
- [2] J. Bergen, P. Grzeszczuk, *Invariants of Lie color algebras acting on graded algebras*, Colloquium Math. **83** (2000), 107–124.
- [3] P. Grzeszczuk, M. Hryniewicka, Polynomial identities of algebras with actions of pointed Hopf algebras, J. Algebra, 278 (2004), 684–703.
- [4] P. Grzeszczuk, M. Hryniewicka, Actions of pointed Hopf algebras with reduced invariants, Proc. Amer. Math. Soc., 135 (2007), 2381–2389.
- [5] N. Jacobson, Structure of rings, Colloquium Publications; Amer. Math. Soc.: Providence, 1964, Vol. 37.