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ACTIONS OF LIE SUPERALGEBRAS
ON REDUCED RINGS

JEFFREY BERGEN, PIOTR GRZESZCZUK, AND MA LGORZATA HRYNIEWICKA

Abstract. In this paper, we look at the question of whether the subring of invariants is
always nontrivial when a finite dimensional Hopf algebra acts on a reduced ring. Affirmative
answers where given by Kharchenko for group algebras and by Beidar and Grzeszczuk for
finite dimensional restricted Lie algebras. Our main result is

Theorem 13 If R is a graded-reduced ring of characteristic p > 2 acted on by a finitely
generated restricted K-Lie superalgebra L, then RL 6= 0.

We can then use Theorem 13 to prove

Corollary 15 Let R be a reduced algebra over a field K of characteristic p > 2 acted on by
a finite dimensional restricted K-Lie superalgebra L and let H = u(L)#G, where G is the
group of order 2 with the natural action on L. If RH satisfies a polynomial identity of degree
d, then R satisfies a polynomial identity of degree dN , where N is the dimension of H.

1. Introduction

One of the most significant results in the study of finite groups acting on associative rings
is due to Kharchenko [K1], who proved that if a finite group G acts on a reduced ring R,
then AG 6= 0, for every nonzero G-stable subring A of R. Over the last twenty years, a great
deal of work has taken place examining finite dimensional Hopf algebras and their actions on
associative algebras. Looking at Kharchenko’s result in terms of Hopf algebras, it provides an
affirmative answer, for group algebras H = KG, to the following:

Question If R is a reduced algebra acted on by a finite dimensional Hopf algebra H, is AH 6= 0,
for every nonzero H-stable subalgebra A of R?

In [BG], an affirmative answer is provided by Beidar and Grzeszczuk when H = u(L), the
restricted enveloping algebra of a finite dimensional restricted Lie algebra in characteristic p.
Observe that group algebras KG and restricted enveloping algebras u(L) are both cocommu-
tative. However, relatively little seems to be known about the action of H on reduced algebras
when H is neither commutative nor cocommutative.
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If L = L0 ⊕ L1 is a restricted Lie superalgebra, then we can once again construct the
restricted enveloping algebra u(L). Observe that if L1 6= 0, then u(L) is no longer a Hopf
algebra as it is not closed under comultiplication. In this case, L has an automorphism σ or
order 2 defined as σ(x) = x, for all x ∈ L0, and σ(y) = −y, for all y ∈ L1. The action of σ
extends to all of u(L) and if we let G = {1, σ}, then we can form the smash product u(L)#G.
It turns out that u(L)#G is a Hopf algebra which is neither commutative nor cocommutative.
In an attempt to answer the above question for additional classes of Hopf algebras, especially
ones which are neither commutative nor cocommutative, it makes sense to examine the actions
of Hopf algebras of the form H = u(L)#G. In this direction, we prove

Corollary 14 Let R be a reduced algebra over a field K of characteristic p > 2 acted on by a
finite dimensional restricted K-Lie superalgebra L and let H = u(L)#G, where G is the group
of order 2 with the natural action on L. Then AH 6= 0, for every nonzero H-stable subalgebra
A of R.

The final result of this paper combines Corollary 14 with a result of Grzeszczuk and
Hryniewicka [GH2, Theorem 4] to prove

Corollary 15 Let R be a reduced algebra over a field K of characteristic p > 2 acted on by a
finite dimensional restricted K-Lie superalgebra L and let H = u(L)#G, where G is the group
of order 2 with the natural action on L. If RH satisfies a polynomial identity of degree d, then
R satisfies a polynomial identity of degree dN , where N is the dimension of H.

In u(L)#G, the automorphism σ commutes with elements of L0 and anti-commutes with
elements of L1. As a result, AL is G-stable and AH = (AL)G. In light of Kharchenko’s
result, to prove Corollary 14, it suffices to prove that AL 6= 0. Therefore most of the work
in this paper will be in extending the result of Beidar and Grzeszczuk from Lie algebras to
Lie superalgebras. Observe that as we attempt to prove that AL 6= 0, we can consider A to
be a ring which may not contain a multiplicative identity. Therefore, in order to prove the
existence of invariants under the actions of Lie superalgebras, it will be more convenient to
work with rings which may not contain a unit element. Thus the main result of this paper is
stated as

Theorem 13 If R is a graded-reduced ring of characteristic p > 2 acted on by a finitely
generated restricted K-Lie superalgebra L, where K ⊆ C0, then RL 6= 0.

We will now introduce the notation that, unless explicitly stated otherwise, will be used
throughout this paper. Along the way, we will see the reasons that some of the hypotheses in
Theorem 13 are more general than those in Corollary 14. R will be always be a ring which
either has no Z-torsion or has characteristic p > 2 and σ will be an automorphism of R such
that σ2 = 1. Therefore R = R0 ⊕R1 is Z2-graded where,

R0 = {r ∈ R | σ(r) = r} and R0 = {r ∈ R | σ(r) = −r}.

When we say that R is graded-reduced, we mean that R0 ∪ R1 contain no nonzero nilpotent
elements. We will let Q represent the symmetric Martindale quotient ring of R and C the
extended center of R. It follows that the action of σ extends to both Q and C, therefore
Q = Q0 ⊕Q1 and C = C0 ⊕ C1 are also Z2-graded. Furthermore, since R is graded-reduced,
so are Q and C. Observe that since R, Q, and C are graded-reduced, they are all semiprime.

We will make repeated use of the fact that C is von Neumann regular. This means that for
every nonzero α ∈ C, there exists some β ∈ C such that α2β = α. Thus e = αβ is a nonzero
central idempotent in Q. For any maximal ideal M of C, we can localize Q, R, and C at M
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to obtain the rings Q̄, R̄, and C̄, respectively. In this case, Q̄ is a centrally closed prime ring
and its center is the field C̄. An excellent reference for more information about Q and C is
the book by Beidar, Martindale, and Mikhalev [BMM]. If B ⊆ Q, we say that B is σ-stable if
σ(B) ⊆ B. When D ⊆ R is a σ-stable subring of R, we will denote its symmetric Martindale
quotient ring as Q(D).

A function f defined on R is said to be continuous if f(R) ⊆ Q and there exists an essential
ideal J of R such that f(J) ⊆ R. Next, let D0 be the set of continuous derivations d of R
such that dσ = σd. It now follows that d(R0) ⊆ Q0 and d(R1) ⊆ Q1 for all d ∈ D0. Recall
that if δ is a σ-derivation of R. then δ(rs) = δ(r)s + σ(r)δ(s), for all r, s ∈ R. We now let
D1 be the set of continuous σ-derivations d of R such that δσ = −σδ. Thus δ(R0) ⊆ Q1 and
δ(R1) ⊆ Q0, for all δ ∈ D1.

Now suppose δ1, δ2 ∈ D0∪D1 and let J be an essential ideal of R such that δ1(J), δ2(J) ⊆ R.
Since δi(σ(J)) = σ(δi(J)) ⊆ σ(R) = R, for i = 1, 2, we can replace J by J + σ(J) and
assume that J is σ-stable. It now follows that J2 is a σ-stable essential ideal of R such
that δ1(δ2(J2)), δ2(δ1(J2)) ⊆ R. Combined with the fact that there are unique extensions of
σ, δ1, δ2 from R to Q, we see that the compositions δ1δ2, δ2δ1 are both continuous. Therefore,
if we let Derσ(R,Q) = D0 ⊕D1, then Derσ(R,Q) is a Lie superring. Furthermore, if R has
characteristic p > 2, Derσ(R,Q) is restricted as dp ∈ D0, for all d ∈ D0. If K is a subring of
C0 such that every element of Derσ(R,Q) is K-linear, then Derσ(R,Q) is a Lie superalgebra
over K which is restricted in characteristic p.

We can now say that a K-Lie superalgebra L = L0 ⊕ L1 acts on R if there exists a Lie
homomorphism φ : L → Derσ(R,Q) such that K ⊆ C0 and the elements of Derσ(R,Q) are
K-linear. In addition, if L is restricted, we assume that φ(x[p]) = φ(x)p, for all x ∈ L0, where
[p] denotes the pth power map. Although K is a commutative ring which need not be a field,
we will assume that 2 is invertible in K.

When no confusion arises, we will often identify the elements of L with their image under
φ in Derσ(R,Q). For any B ⊆ Q, we let Bσ = {b ∈ B | σ(b) = b} and if V is a subset of L,
we let BV = {b ∈ B | δ(b) = 0, for all δ ∈ V }. We also say that B is V -stable if δ(B) ⊆ B,
for all δ ∈ V .

If A is a subring of Q and B ⊆ Q, we let CA(B) = {a ∈ A | ab = ba, for all b ∈ B} and
AnnA(B) = {a ∈ A | ab = 0, for all b ∈ B}. Since Q is graded-reduced, it is easy to see that
if A and B are σ-stable, then AnnA(B) is a two-sided σ-stable ideal of A. When dealing with
elements in a, b ∈ Q, the bracket [ , ] will denote the usual commutator ab − ba. However,
when dealing with elements of L and Derσ(R,Q), it will denote the multiplication within a
Lie superalgebra.

If d ∈ D0, we say that d is X-inner, if there exists some q ∈ Q such that d(r) = qr − rq,
for all r ∈ R. Similarly, if δ ∈ D1, we say that δ is X-inner, if there exists some q ∈ Q such
that δ(r) = qr − σ(r)q, for all r ∈ R. In addition, we say that σ is X-inner if there exists
some nonzero q ∈ Q such that qr = σ(r)q, for all r ∈ R. The set of elements of L which
can be written as the sum of X-inner elements of L0 and L1 is denoted as Linn. Derivations,
σ-derivations, and automorphisms which are not X-inner are called X-outer. Two extremely
important special cases of Theorem 13 will be where Linn = L and Linn = 0. After handling
these special cases, much of the proof of Theorem 13 consists of patching these two cases
together using mathematical induction and properties of C.

The result of Beidar and Grzeszczuk involves technical difficulties not present in Kharchenko’s
result. One reason is that when working with the action of a Lie algebra L, in order to split
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into the X-inner and X-outer cases, one must examine linear combinations over C of elements
of L. Observe that although all the elements L may send R to R, linear combinations over
C of these elements are continuous derivations. In addition, when restricting the action of L
to some subset A of R, it must be checked that the action on A is continuous and the rela-
tionship between the extended centers of R and A must also be examined. In this paper, the
situation is further complicated because the automorphism σ need not be C-linear. In light of
these technical points, in Theorem 13, it is necessary to consider derivations and σ-derivations
which are continuous. It is also natural to look at Lie superalgebras over commutative rings
K where K ⊆ C. Furthermore, it is necessary for K to be contained in C0, otherwise D0 and
D1 would not be modules over K.

By twisting the multiplication in a Lie color algebra by a cocyle, one can obtain a Lie
superalgebra. Other pointed Hopf algebras are also related to simpler ones in a similar manner.
In situations like this, the invariants of a Hopf algebra acting on a ring can sometimes be
studied by also twisting the multiplication in the ring, as was done in [BeG]. Observe that
if the original ring was reduced, the new ring obtained by twisting would only be graded-
reduced. We should point out that graded-reduced rings which are not reduced occur quite
naturally. For example, let F be a field and g an automorphism of F of order 2. If we let
G = {1, g}, then the smash product F#G is certainly graded-reduced but is not reduced as
it is isomorphic to the 2 × 2 matrices over the fixed field FG. In the hope that Theorem 13
can later be applied to actions of other pointed Hopf algebras, our work has been in the more
general setting of graded-reduced rings.

2. The Main Result

At various points in this paper, it will be very useful to restrict the action of L to appropriate
ideals or subrings of R. Our first lemma indicates that we can use certain idempotents in C
to restrict the action of L to any σ-stable ideal of R.

Lemma 1. Suppose the K-Lie superalgebra L acts on the graded-reduced ring R.

(1) If e = e2 ∈ C0, then δ(e) = 0, for all δ ∈ L0 ∪ L1.
(2) Let M 6= 0 be a σ-stable ideal of R. Then the action of every δ in L0 ∪ L1 restricts

to an action on M . Furthermore, there exists some e = e2 ∈ C0 that allows us to
naturally identify elements of L with elements of eL such that eL is a Lie superalgebra
over Ke which acts on M .

(3) Let e = e2 ∈ C0 and let J be a σ-stable essential ideal of R such that Je ⊆ R. Then
eL is a Lie superalgebra over Ke which acts on Je.

Proof. For (1), if δ ∈ L0 ∪ L1, then since σ(e) = e, we have

δ(e) = δ(e2) = δ(e)e+ eδ(e) = 2eδ(e).

Multiplying the above equation by e yields eδ(e) = 2eδ(e). This immediately implies that
eδ(e) = 0, which in turns implies that δ(e) = 0.

For part (2), let Q and Q(M) represent the symmetric Martindale quotient rings of R and
M , respectively. To show that δ acts on M , we need to show that δ(M) ⊆ Q(M) and also
that δ sends some essential ideal of M into M . Observe that there exists some e = e2 ∈ C
such that Q(M) = Qe. Since M is σ-stable, it follows that σ(e) = e. If r ∈M and δ ∈ L0∪L1

then r = qe, for some q ∈ Q, and

δ(r) = δ(qe) = δ(q)e ∈ Qe = Q(M).
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Thus δ(M) ⊆ Q(M).
Next, let I be an essential ideal of R such that δ(I) ⊆ R. Since δ(σ(I)) = σ(δ(I)) ⊆ σ(R) =

R, we can choose I to be σ-stable. If we let P = I ∩M , then P 2 is a σ-stable essential ideal
of M and

δ(P 2) ⊆ δ(P )P + Pδ(P ) ⊆ RM +MR ⊆M.

Combining the facts that δ(M) ⊆ Q(M) and δ(P 2) ⊆M , we see that δ does act on M .
Now if r ∈M and δ ∈ L0 ∪ L1 then r = qe, for some q ∈ Q, and

eδ(r) = eδ(qe) = eδ(q)e = δ(q)e = δ(r).

The previous equation indicates that we can naturally identify the actions of eδ and δ on
M . Since K ⊆ C0, we have Ke ⊆ C0e = (Ce)0, thus Ke is contained in the even part of
the extended center of M . Therefore, if we let eL = {eδ | δ ∈ L}, then eL is a Ke-Lie
superalgebra acting on M .

For part (3), let M = Je; since J is essential in R, we have Q(M) = Q(J)e = Q(R)e = Qe.
We can now apply part (2) to the σ-stable ideal M . �

Our next lemma will allow us to reduce the actions of L and L0 to some naturally occuring
subrings of R and R0.

Lemma 2. Let R be graded-reduced and let T be a σ-stable subring of Q which contains C0

such T ∩ J 6= 0, for every σ-stable ideal J 6= 0 of R.

(1) T embeds naturally in Q(T ∩R) and T0 embeds naturally in Q((T ∩R)0).
(2) If the K-Lie superalgebra L acts on R such that T is L-stable, then L acts on T ∩ R

and L0 acts on (T ∩R)0.

Proof. For (1), let t ∈ T . Since t, σ(t) ∈ Q, there exists an essential ideal J of R such that
Jt+ tJ + Jσ(t) + σ(t)J ⊆ R. Therefore

σ(J)t+ tσ(J) = σ(Jσ(t) + σ(t)J) ⊆ σ(R) = R.

As a result, if let M = J+σ(J), then M is a σ-stable essential ideal of R such that Mt+tM ⊆
R.

Let U = AnnR((T ∩M)0); if we can show that U = 0, then we will have shown that T ∩M
is an essential ideal of T ∩R and also that (T ∩M)0 is an essential ideal of (T ∩R)0. If U 6= 0,
then UM is a non-zero σ-stable of R. Hence T ∩ UM is nonzero graded-reduced subring of
R, thus (T ∩ UM)0 6= 0. As a result, if 0 6= v ∈ (T ∩ UM)0, then

0 6= v2 ∈ U · (T ∩M)0 = AnnR((T ∩M)0) · (T ∩M)0 = 0,

a contradiction. Thus U = 0 and T ∩M and (T ∩M)0 are essential ideal of T ∩R and (T ∩R)0,
respectively. Since

(T ∩M)t+ t(T ∩M) ⊆ T ∩R,
t sends an essential ideal of T ∩ R into T ∩ R by both left and right multiplication. Thus
t ∈ Q(T ∩R) and so, T embeds in Q(T ∩R).

In addition, if t ∈ T0, then it is clear that

(T ∩M)0t+ t(T ∩M)0 ⊆ (T ∩R)0.

Since (T ∩M)0 is essential in (T ∩R)0, t ∈ Q((T ∩R)0). Hence T0 embeds in Q((T ∩R)0).
For (2), let δ ∈ L0 ∪ L1. Since δ(T ) ⊆ T , part (1) implies that

δ(T ∩R) ⊆ T ⊆ Q(T ∩R).
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Next, let J be an essential ideal of R such that δ(J) ⊆ R. Observe that

δ(σ(J)) = σ(δ(J)) ⊆ σ(R) = R.

Therefore, if we let M = J + σ(J), then M is a σ-stable essential ideal of R such that
δ(M) ⊆ R. The argument in part (1) shows that T ∩ M is an essential ideal of T ∩ R.
Moreover,

δ(T ∩M) ⊆ T ∩R.
Thus T∩M is an essential ideal of T∩R which is sent by δ into T∩R. Since δ(T∩R) ⊆ Q(T∩R)
and δ(T ∩M) ⊆ T ∩R, we see that δ acts on T ∩R.

Since T contains C0, it follows from part (1) that C0 embeds in the extended center of T ∩R.
Thus K embeds in the even part of the extended center of T ∩R and the K-Lie superalgebra
L does act on T ∩R.

If δ ∈ L0 then the facts that δ(R0) ⊆ Q0 and δ(T ) ⊆ T combine with part (1) to imply that

δ((T ∩R)0) ⊆ T0 ⊆ Q((T ∩R)0).

Since

δ((T ∩M)0) ⊆ (T ∩R)0,

we see that (T ∩M)0 is an essential ideal of (T ∩R)0 which is sent by δ into (T ∩R)0

Finally, since T0 contains C0, it follows from part (1) that C0 embeds in the extended center
of (T ∩ R)0. Thus K embeds in the even part of the extended center of (T ∩ R)0 and the
K-Lie algebra L0 acts on (T ∩R)0. �

Our next lemma examines the nature of those elements of Q which induce the X-inner
elements of L0 ∪ L1.

Lemma 3. Let R be a graded-reduced ring acted on by the K-Lie superalgebra L.

(1) If δ ∈ Li is X-inner, then δ is induced by some a ∈ Qi.
(2) If δ, d ∈ L0 ∪ L1 and d is induced by the homogeneous element a ∈ Q, then [δ, d] is

induced by δ(a). Thus Linn is an ideal of L.
(3) If a, b ∈ Q0 induce the same derivation of R, then a− b ∈ C0.
(4) If a, b ∈ Q1 induce the same σ-derivation of R, then a = b.
(5) If a, b ∈ Q1 induce the σ-derivations d, δ, then ab+ ba induces the derivation [δ, d].

Proof. For (1), first suppose δ ∈ L0 is induced by a = a0 + a1 ∈ Q. Then

(2.1) δ(r) = ar − ra = (a0 + a1)r − r(a0 + a1)

= (a0r − ra0) + (a1r − ra1).

This immediately implies that

δ(σ(r)) = (a0σ(r)− σ(r)a0) + (a1σ(r)− σ(r)a1)

and

σ(δ(r)) = (a0σ(r)− σ(r)a0)− (a1σ(r)− σ(r)a1).

Since δ and σ commute, the previous equations imply that 2(a1σ(r) − σ(r)a1) = 0, hence
a1σ(r)− σ(r)a1 = 0. Replacing r by σ(r) yields a1r − ra1 = 0. Equation 2.1 now becomes

δ(r) = (a0r − ra0) + (a1r − ra1) = a0r − ra0.

Thus δ is induced by a = a0 ∈ Q0.
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Now suppose δ ∈ L1 is induced by a = a0 + a1 ∈ Q. Then

(2.2) δ(r) = ar − σ(r)a = (a0 + a1)r − σ(r)(a0 + a1)

= (a0r − σ(r)a0) + (a1r − σ(r)a1).

This implies that

δ(σ(r)) = (a0σ(r)− ra0) + (a1σ(r)− ra1)

and

σ(δ(r)) = (a0σ(r)− ra0)− (a1σ(r)− ra1).

Since δσ = −σδ, adding the previous equations results in 2(a0σ(r)− ra0) = 0, hence a0σ(r)−
ra0 = 0. Replacing r by σ(r) yields a0r − σ(r)a0 = 0. Equation 2.2 now becomes

δ(r) = (a0r − σ(r)a0) + (a1r − σ(r)a1) = a1r − σ(r)a1.

Thus δ is induced by a = a1 ∈ Q1.
For (2), we will need to examine four cases and will begin by supposing that d(r) = ar−g(r)a

is a g-derivation and δ is an h-derivation, where g, h are commuting automorphisms of R.
Therefore

(2.3) [δ, d](r) = δ(ar − g(r)a)− (aδ(r)− g(δ(r))a) =

δ(a)r + h(a)δ(r)− δ(g(r))a− h(g(r))δ(a)− aδ(r) + g(δ(r))a.

For the first case, suppose d, δ ∈ L0; then g = h = 1 and h(a) = a. Then 2.3 simplifies to
[δ, d](r) = δ(a)r − rδ(a). Hence [δ, d] is X-inner and induced by δ(a).

Second, suppose d ∈ L0 and δ ∈ L1; then g = 1, h = σ, h(a) = a, and gδ = δg. In this case,
2.3 simplifies to [δ, d](r) = δ(a)r − σ(r)δ(a). Hence, once again, [δ, d] is X-inner and induced
by δ(a).

For our third case, suppose d ∈ L1 and δ ∈ L0; then g = σ, h = 1, h(a) = a, and gδ = δg.
This time 2.3 simplifies to [δ, d](r) = δ(a)r−σ(r)δ(a). As before, [δ, d] is X-inner and induced
by δ(a).

Finally, suppose d, δ ∈ L1. Then, instead of looking at 2.3, we need to examine

(2.4) (δd+ dδ)(r) = δ(a)r + h(a)δ(r)− δ(g(r))a− h(g(r))δ(a) + aδ(r)− g(δ(r))a.

In this case, g = h = σ, h(a) = −a, and gδ = −δg. Therefore 2.4 now becomes [δ, d](r) =
δ(a)r − rδ(a) and so, [δ, d] is X-inner and induced by δ(a). As a result, in every case [δ, d] is
induced by δ(a). Thus [L,Linn] ⊆ Linn and so, Linn is an ideal of L.

For (3), if a, b ∈ Q0 both induce the derivation δ, then we have

0 = δ(r)− δ(r) = (ar − ra)− (br − rb) = (a− b)r − r(a− b),
for all r ∈ R. Since a − b commutes with every element of R, it also commutes with every
element of Q. Hence a− b ∈ C ∩Q0 = C0.

For (4), if a, b ∈ Q1 both induce the skew derivation δ, then we have

0 = δ(r)− δ(r) = (ar − σ(r)a)− (br − σ(r)b) = (a− b)r − σ(r)(a− b),
for all r ∈ R. If we let q = a − b, then q ∈ Q1 and the previous equation tells us that
qr = σ(r)q, for all r ∈ R. But implies that qr = σ(r)q, for all r ∈ Q. If we now let r = q in
the equation qr = σ(r)q and use the fact that σ(q) = −q, we obtain q2 = −q2. Hence 2q2 = 0
and so, q2 = 0. However q is homogeneous and Q contains no nonzero nilpotent homogeneous
elements, hence q = 0. Thus 0 = q = a− b, hence a = b.
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For (5), if d is induced by a ∈ Q1, then it follows from part (2) that [δ, d] is induced by
δ(a). But since δ is induced by b, we have δ(a) = ba− σ(a)b = ab+ ba. Thus [δ, d] is induced
by ab+ ba, as desired. �

Our next lemma is essentially a restatement of Theorem 2.6 and Corollary 2.7 of [BG]. It
will be extremely useful in analyzing the special cases where all the elements of either L0 or
L1 are X-inner.

Lemma 4. Let R be a semiprime ring and let A be a semiprime subring of Q which contains
C and is finitely generated as a C-module. If we let T = CQ(A), then T ∩ J 6= 0, for every
nonzero ideal J of R.

Proof. We will first show that T ∩ R 6= 0. Since A is finitely generated over C, there exist
a1, . . . , an ∈ A such that A = Ca1 + · · · + Can. Let M be a maximal ideal of C such that
the image Ā of A under the localization at M is nonzero. Let Q̄, C̄ denote, respectively, the
localizations of Q and C at M . Recall that C̄ is a field and is the center of the centrally closed
prime ring Q̄.

It is clear that Ā = C̄ā1 + · · · + C̄ān. Furthermore, Proposition 5(i) of [GH1] asserts that
Ā is also semiprime. Thus Ā is a semisimple algebra which is finite dimensional over the field
C̄. We can now use some of the arguments from the proof of Theorem 2.6 in [BG].

Observe that Ā is a Frobenius algebra over C̄. Therefore there exists a non-degenerate
associate bilinear form F : Ā × Ā → C̄. We can fix a basis {ē1, . . . , ēm} for Ā and let
{ē∗1, . . . , ē∗m} be the dual basis, where m ≤ n. Thus F (ēi, ē

∗
j) = 1 when i = j and F (ēi, ē

∗
j) = 0

when i 6= j.
For 1 ≤ t ≤ n, there exist ᾱtkj, β̄tjk ∈ C̄ such that

(2.5) ātē
∗
k =

m∑
j=1

ᾱtkj ē
∗
j and ēj āt =

m∑
k=1

β̄tjkēk.

Since F is associative, we have

(2.6) ᾱtkj = F (ēj, ātē
∗
k) = F (ēj āt, ē

∗
k) = β̄tjk.

Let ξ ∈ C\M be a common denominator for every ᾱtkj, ē
∗
k, ē
∗
j . Thus

ᾱtkj = ξ−1αtkj, ē∗k = ξ−1e∗k, and ēj = ξ−1ej.

Rewriting the last three equations in Q, there exists some η ∈ C\M such that

ηξᾱtkj = ηαtkj, ηξē∗k = ηe∗k, and ηξēj = ηej.

Using these facts along with 2.6, we can rewrite 2.5 as

(2.7) ηξate
∗
k =

m∑
j=1

ηαtkje
∗
j and ηξejat =

m∑
k=1

ηαtkjek.

We can now define the map ρ : Q→ Q as ρ(x) = ηξ
∑m

k=1 e
∗
kxek, for all x ∈ Q. If 1 ≤ t ≤ n

and x ∈ Q, by applying 2.7, we have

ρ(x)at = (ηξ
m∑
j=1

e∗jxej)at =
m∑
j=1

e∗jx(ηξejat) =
m∑
j=1

e∗jx

m∑
k=1

ηαtkjek =



ACTIONS OF LIE SUPERALGEBRAS 9

m∑
j=1

m∑
k=1

ηαtkje
∗
jxek =

m∑
k=1

(
m∑
j=1

ηαtkje
∗
j

)
xek =

m∑
k=1

ηξate
∗
kxek =

at(ηξ
m∑
k=1

e∗kxek) = atρ(x).

Since {a1, . . . , an} spans A over C, it is clear that ρ(x)a = aρ(x) for all x ∈ Q and a ∈ A.
Thus ρ(Q) ⊆ T . Martindale’s Theorem asserts that since {ē1, . . . , ēm} and {ē∗1, . . . , ē∗m} are
subsets of the prime ring Q̄ which are linearly independent over C̄, there exists some q ∈ Q
such that

∑m
k=1 ē

∗
kq̄ēk 6= 0 in Q̄. Since η, ξ ∈ C\M , both η̄ and ξ̄ are invertible in Q̄. Therefore

η̄ξ̄
∑m

k=1 ē
∗
kq̄ēk 6= 0 in Q̄. But this immediately implies that ρ(q) = ηξ

∑m
k=1 e

∗
kqek 6= 0 in Q.

Hence ρ(Q) 6= 0.
Since ρ involves only a finite number of elements of Q, there exists an essential ideal I of R

such that ρ(I) ⊆ R. Observe that since I is essential, it has the same symmetric Martindale
quotient ring as R. Thus Q(I) = Q, which immediately implies that ρ(Q(I)) 6= 0. Viewing I
as a semiprime ring, we can apply a result of Beidar [B] which asserts that since ρ does not
vanish on Q(I), then it also does not vanish on I. Combining several of our observations, we
can now conclude that

0 6= ρ(I) ⊆ T ∩R = CR(A).

Thus we have succeeded in showing that T ∩R 6= 0.
To complete the proof, suppose J is a nonzero ideal of R. Then there exists some e = e2 ∈ C

such that Q(J) = Qe. We are now in the situation where J is a semiprime ring with symmetric
Martindale quotient ring Qe and extended center Ce such that Ae is a semiprime subring of
Qe which contains Ce and is finitely generated as a Ce-module. Therefore we can apply our
previous argument to conclude that CJ(eA) 6= 0. Since multiplication by 1− e annihilates J ,
it follows that if r ∈ CJ(eA) and a ∈ A, then

[r, a] = [r, ((1− e) + e)a] = [r, (1− e)a] + [r, ea] = 0 + 0 = 0.

Hence r ∈ CJ(A). Thus 0 6= CJ(eA) ⊆ CJ(A) = T ∩ J , thereby concluding the proof. �

We can now prove the important special cases of our main result where either L0 ⊆ Linn or
L1 ⊆ Linn. We have stated the following lemma in such a way that we will be able to apply
it in both the characteristic p > 2 and characteristic 0 cases.

Lemma 5. Suppose the graded-reduced ring R is acted on by the finitely generated K-Lie
superalgebra L such that the elements of L0 act on R as algebraic derivations. If either
L0 ⊆ Linn or L1 ⊆ Linn, then RL 6= 0.

Proof. Let V be an ideal of L which is finitely generated over K and contained in Linn. We
can write

V = (Kx1 + · · ·+Kxs)⊕ (Ky1 + · · ·+Kyt),

where xi ∈ L0 ∩ Linn and yj ∈ L1 ∩ Linn, for all i, j. By Lemma 3(1), for every i, j, we can
let ai ∈ Q0 induce the derivation corresponding to xi and let bj ∈ Q1 induce the σ-derivation
corresponding to yj. Next, let W0 and W1 be the span over C of the sets {1, a1, . . . , as}
and {b1, . . . , bt}, respectively. Then Lemma 3(4)(5) implies that W = W0 ⊕W1 is a finitely
generated Lie superalgebra over C. Now let A be the subalgebra of Q generated over C by
the set {1, a1, . . . , as} ∪ {b1, . . . , bt}. Observe that A is spanned over C by Poincaré-Birkhoff-
Witt monomials of the form a1

i1 · · · asisb1
j1 · · · btjt , where each jl ≤ 1. Since each ai induces a
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derivation which is algebraic over C, Proposition 2.2 of [BG] asserts that each ai is algebraic
over C. As a result, we can bound the exponents of the ai which appear in the monomials
which span A over C. Hence A is finitely generated over C.

Since R and Q are graded-reduced and A is σ-stable, we see that A is semiprime. Next, let
T = QV and let S = CQ(A). If J 6= 0 is a σ-stable ideal of R, then Lemma 4 implies that
S ∩J 6= 0. Since S ∩J is σ-stable, it follows that (S ∩J)0 6= 0. However, it is easy to see that
(S ∩ J)0 ⊆ T ∩ J . As a result, T is a σ-stable subring of Q which contains C0 such T ∩ J 6= 0,
for every σ-stable ideal J 6= 0 of R. Furthermore, since V is an ideal of L, T is also L-stable.
Thus Lemma 2(2) now tells us that L acts on T ∩ R. Since T ∩ R = RV , we now know that
L acts on the nonzero graded-reduced ring RV .

We will first consider the case where L0 ⊆ Linn. In this case, let

V = L0 ⊕ [L0, L1].

Observe that V is certainly an ideal of L which is finitely generated over K and Lemma 3(2)
implies that V ⊆ Linn. Therefore we can apply our argument above to assert that RV 6= 0
and L acts on RV . Since V contains L0, the action of L on RV is quite special. In particular,
if r ∈ RV , d ∈ L0, and δ, δ1 ∈ L1, then we have

(2.8) d(r) = 0, δ2(r) = 0, and δ(δ1(r)) = −δ1(δ(r)).

There exists a σ-stable essential ideal I of RV such that δ(I) ⊂ RV , for all t of the σ-
derivations that generate L1 over K. It follows from 2.8 that the composition of any t + 1
elements of L vanishes on RV , therefore if we let J = I t, then any composition of the generators
of L1 must send J into RV . If L1 vanishes on J , then clearly J ⊆ RL and we are done in this
case. However, if L1 does not vanish on J , then there exists a smallest positive integer m such
the product of any m+ 1 elements of L1 vanishes on J but there exists a composition ρ of m
generators of L1 such that 0 6= ρ(J) ⊆ RV . Therefore, if δ ∈ L0 ∪ L1, then δ(ρ(J)) = 0. Thus

0 6= ρ(J) ⊆ RL

and so, RL 6= 0.
Finally, let us consider the case where L1 ⊆ Linn. In this case, let

V = [L1, L1]⊕ L1.

Once again, V is an ideal of L which is finitely generated over K and Lemma 3(2) implies
that V ⊆ Linn. Therefore our previous argument again implies that RV 6= 0 and L acts on
RV . However, in this case, Lemma 2(2) also asserts that L0 acts on the nonzero reduced ring
(RV )0. Since L0 is a finitely generated K-Lie algebra of algebraic derivations, Theorems 3.4
and 3.5 of [BG] imply that ((RV )0)L0 6= 0. Clearly ((RV )0)L0 ⊆ RL, thus RL 6= 0, thereby
concluding the proof. �

In the main result of this paper, L will be finitely generated and restricted. The concept
of being restricted is only valid in characteristic p and we can observe that L being finitely
generated and restricted is equivalent to L being finitely generated with L0 consisting solely
of algebraic derivations. In light of this, there is a natural characteristic 0 analog of our main
result. In fact, the characteristic 0 version is much easier and, as we will now see, follows
directly from Lemma 5.

Theorem 6. Let R be a graded-reduced ring of characteristic 0 acted on by a finitely generated
K-Lie superalgebra L, where K ⊆ C0. If every derivation in L0 is algebraic over C, then
RL 6= 0.
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Proof. Since every derivation in L0 is algebraic over C and the characteristic is 0, it follows
from [K2] that every element of L0 is X-inner. Therefore L0 ⊆ Linn and the result follows
immediately from Lemma 5. �

Our next lemma deals with three more important special cases of our main result.

Lemma 7. Let R be a graded-reduced ring acted on by a finitely generated restricted K-Lie
superalgebra L, where K ⊆ C0. Suppose at least one of the following three conditions holds:

(1) there exists some nonzero a ∈ Q such that ar = σ(r)a, for all r ∈ Q;
(2) σ is not C-linear;
(3) some element of L1 is not C-linear.

Then RL 6= 0.

Proof. We begin with an observation that will be used in the proofs of parts (1) and (2).
Since C is von Neumann regular, if 0 6= β ∈ C0, then there exists γ1 ∈ C such that β2γ1 = β.
Applying σ to both sides of this equation yields β2σ(γ1) = β. Adding our last two equations

and dividing by 2 yields β2(γ1+σ(γ1)
2

) = β. Therefore if we let γ = γ1+σ(γ1)
2

, then γ ∈ C0 and
β2γ = β. If we let e = βγ, then it is clear that 0 6= e = e2 ∈ C0. In addition, since e ∈ Qβ
and β = βe ∈ Qe, it follows that Qβ = Qe. Hence β is invertible in Qe. Thus, for every
0 6= β ∈ C0, there exists some e = e2 ∈ C0 such that β is invertible in Qe.

Suppose condition (1) holds. We can write a = a0 + a1, where a0 ∈ Q0 and a1 ∈ Q1. Then
if we let r = a1 in the equation ar = σ(r)a, we obtain

(a0 + a1)a1 = −a1(a0 + a1).

Looking at the even part of each side of the previous equation tells us that 2a1
2 = 0, which

implies that a1 = 0. Hence a = a0 ∈ Q0.
It is easy to see that a2r = σ2(r)a2 = ra2, for all r ∈ Q. Thus a2 is a nonzero element of C0.

Our observation above tells us that there exists some e = e2 ∈ C0 such that a2 is invertible
in Qe. Thus ae is an invertible element of Qe. Next, let J be a σ-stable essential ideal of R
such that Je ⊆ R. By Lemma 1(3), eL acts on Je and it suffices to show that (Je)eL 6= 0.
However, in Q(Je) = Qe, the element ea is now invertible. Therefore, in order to prove that
RL 6= 0, we may reduce to the case where a is invertible.

In light of our reduction, we are now in the situation where σ(r) = ara−1, for all r ∈ Q. If
δ ∈ L1, then δ and σ anti-commute. Therefore, if r ∈ Q, then using the fact that δ(a−1) =
−a−1δ(a)a−1, we obtain

0 = (δσ + σδ)(r) = δ(σ(r)) + σ(δ(r)) = δ(ara−1) + aδ(r)a−1 =

δ(a)ra−1 + aδ(r)a−1 + aσ(r)δ(a−1) + aδ(r)a−1 =

δ(a)ra−1 + aδ(r)a−1 − aσ(r)a−1δ(a)a−1 + aδ(r)a−1.

Multiplying the previous equation by a−1 on the left and a on the right yields

0 = a−1δ(a)r + δ(r)− σ(r)a−1δ(a) + δ(r).

But this can easily be rewritten as

2δ(r) = −a−1δ(a)r + σ(r)a−1δ(a).

Dividing both sides by 1
2

and letting b = −a−1δ(a)
2

gives us

δ(r) = br − σ(r)b.
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Thus every element of L1 is X-inner. Lemma 5 now implies that RL 6= 0.
Now suppose condition (2) holds. Then there exists some nonzero α ∈ C such that σ(α) =
−α. Since α2 is a nonzero element of C0, the argument used in the proof of part (1) tells us
that there is some e = e2 ∈ C such that α is invertible in Qe. Using the same reduction as in
part (1), we may now reduce down to the case where α is invertible.

If δ ∈ L1 and r ∈ Q, we have

δ(αr) = δ(α)r − αδ(r)

and

δ(rα) = δ(r)α + σ(r)δ(α).

Since δ(αr) = δ(rα), the previous equations imply that

δ(α)r − αδ(r) = δ(r)α + σ(r)δ(α).

However α ∈ C, therefore we can simplify further to obtain

2αδ(r) = δ(α)r − σ(r)δ(α).

We are in the situation where α is invertible, therefore if we let b = α−1δ(α)
2

, we can rewrite
the previous equation as

δ(r) = br − σ(r)b.

Thus we are once again in the situation where every element of L1 is X-inner. Therefore,
Lemma 5 again implies that RL 6= 0.

Finally, let us suppose that condition (3) holds. In light of part (2), we may assume that
σ is C-linear. In this case, there exists some δ ∈ L1 and c ∈ C such that δ(c) 6= 0. If r ∈ Q,
using the fact that σ(c) = c, we have

δ(cr) = δ(c)r + cδ(r)

and

δ(rc) = δ(r)c+ σ(r)δ(c).

Since δ(cr) = δ(rc) and cδ(r) = δ(r)c, the previous equations imply that

δ(c)r = σ(r)δ(c).

However, since δ(c) 6= 0, it follows from part (1) thatRL 6= 0, thereby concluding the proof. �

In [BM, Proposition 1.1], Bergen and Montgomery showed that a continuous derivation
d of a prime ring R is X-inner if and only if there exist a, b ∈ R, with a 6= 0, such that
ad(ra) = bra − arb, for all r ∈ R. To handle the case where Linn = 0, we will not only use
the result in [BM] but we will also need to extend it to continuous σ-derivations which are
induced by odd elements in Lie superalgebras. We should point out that Kharchenko [K3] has
proven more general results on the nature of X-inner derivations and skew derivations but we
will not need the full generality of his results.

Proposition 8. Let R be a prime ring and δ a continuous σ-derivation of R where δσ = −σδ
and σ2 = 1. Then δ is X-inner if and only if there exists some a, b ∈ R such that a 6= 0,
σ(a) = a, and aδ(ra) = bra− aσ(r)b, for all r ∈ R.
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Proof. In one direction, since δ is X-inner, there exist some q ∈ Q such that

δ(r) = qr − σ(r)q,

for all r ∈ R. Next, let I 6= 0 be an ideal of R such that Iq + qI ⊆ R. Since R is prime, we
can replace I by I ∩ σ(I) and can therefore assume that I is σ-stable. Thus there exists some
nonzero a ∈ I such that σ(a) = a. If we multiply the equation δ(r) = qr − σ(r)q on the left
by a and then replace r by ra, we obtain

aδ(ra) = a(q(ra)− σ(ra)q) = (aq)ra− aσ(r)(aq).

Letting b = aq results in
aδ(ra) = bra− aσ(r)b,

as desired.
In the other direction, suppose aδ(ra) = bra − aσ(r)b, for all r ∈ Q, where a, b ∈ R such

that a 6= 0 and σ(a) = a. Let J be a nonzero σ-stable ideal of R such that δ(J) ⊆ R and
define the left module map q from RaJ to R as

(xaσ(y))q = xby − xaδ(y),

for all x ∈ R and y ∈ J . In order to show that q ∈ Q, we first need to check that q is
well-defined. Thus we must show that whenever∑

i

xiaσ(yi) = 0,

where xi ∈ R and yi ∈ J , then it follows that such that∑
i

xibyi − xiaδ(yi) = 0.

To this end, suppose xi ∈ R and yi ∈ J such
∑

i xiaσ(yi) = 0 and let r ∈ R. Using the facts
that

byira = aσ(yir)b+ aδ((yir)a) and δ(yi)ra = δ(yi(ra))− σ(yi)δ(ra),

we obtain
(
∑
i

xibyi − xiaδ(yi))ra =
∑
i

xib(yir)a− xiaδ(yi)ra =∑
i

xiaσ(yir)b+ xiaδ((yir)a)− xiaδ(yi(ra)) + xiaσ(yi)δ(ra) =

(
∑
i

xiaσ(yi))(σ(r)b+ δ(ra)) = 0.

Thus we have shown that if ∑
i

xiaσ(yi) = 0,

then
(
∑
i

xibyi − xiaδ(yi))Ra = 0.

Since R is prime, this implies that
∑

i xibyi−xiaδ(yi) = 0, as desired. Hence q is well-defined.
Next, we need to show that q does induce δ. If we let x, r ∈ R and y ∈ J , then by using

the definition of q, we obtain

(xaσ(y))(qr − σ(r)q − δ(r)) = (xaσ(y)q)r − xaσ(yr)q − xaσ(y)δ(r) =

xbyr − xaδ(y)r − xbyr + xaδ(yr)− xaσ(y)δ(r) = 0.
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Hence
RaJ(qr − σ(r)q − δ(r)) = 0

and the fact that R is prime implies that

qr − σ(r)q − δ(r) = 0.

Therefore δ(r) = qr − σ(r)q, for all r ∈ R.
Finally, let I be a nonzero σ-stable ideal of R which is contained in RaJ such that δ(I) ⊆ R.

Since Iq ⊆ R, it also follows that qI ⊆ R. Thus Iq + qI ⊆ R and we see that q ∈ Q, as
desired. �

The smash product Q#u(L) is often very useful in examining the action of L on R. The
next proposition, which holds for all prime rings, shows that Q#u(L) satisfies an important
bimodule intersection property provided Linn = 0 and some additional technical conditions
are satisfied.

Proposition 9. Let R be a prime ring with extended center C acted on by the finite dimen-
sional restricted C-Lie superalgebra L. In addition, suppose that the action of L is C-linear
and the action of σ is both X-outer and C-linear. If Linn = 0, then every nonzero (R,R)-
bimodule of Q#u(L) intersects R nontrivially.

Proof. Let {x1, . . . , xn} and {y1, . . . , ym} denote, respectively, a C-basis for L0 and a C-basis
for L1. Every element of u(L) is spanned over C by Poincaré-Birkhoff-Witt monomials of the
form

x1
i1 · · · xniny1

j1 · · · ymjm ,
where the exponent of each xi is at most p− 1 and the exponent of each yj is at most 1. We
define the degree of

x1
i1 · · ·xniny1

j1 · · · ymjm

to be
i1 + · · · in + j1 + · · · jm.

Observe that every element of Q#u(L) can be written uniquely as
∑
q∆∆, where q∆ ∈ Q and

the sum is taken over all Poincaré-Birkhoff-Witt monomials in u(L). The support of
∑
q∆∆

is defined to be those monomials ∆ such that q∆ 6= 0. The degree of
∑
q∆∆ is then defined

to be the largest degree of any monomial in its support.
Let B be a nonzero (R,R)-bimodule of Q#u(L) and let N be the smallest degree of a

nonzero element in B. Since every nonzero (R,R)-bimodule of Q certainly intersects R non-
trivially, it suffices to show that N = 0. Therefore, by way of contradiction, we will assume
that N ≥ 1. From among all elements of B of degree N , let w be one with the minimal
number of monomials of degree N in its support. Let

η = x1
i1 · · ·xniny1

j1 · · · ymjm

be a monomial of degree N − 1 which was obtained by taking a degree N monomial in the
support of w and lowering one of the exponents by 1. Next, let {∆1, . . . ,∆t} be the monomials
in the support of w from which we could obtain η by decreasing one of the exponents by 1.
Let I be those elements of R which appear as a coefficient of ∆1 in an element of B of degree
N which has the same degree N monomials as w in its support. Observe that since B is an
(R,R)-bimodule, we know that I ∪ {0} is a nonzero ideal of R. Since R is prime, we may
assume that I contains some a 6= 0 such that σ(a) = a. Therefore, without loss of generality,
we may assume that a is the coefficient of ∆1 in w.
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If ∆ is a Poincaré-Birkhoff-Witt monomial in u(L), let M∆ denote the sum of the exponents
of y1, . . . , ym. As a shorthand, let M = M∆1 . It is clear, for every ∆i ∈ {∆1, . . . ,∆t}, that
either M∆i

is equal to M or differs from M by 1. Recall that in Q#u(L), if s ∈ Q and d is
the derivation corresponding to x ∈ L0, then

xs = sx+ d(s).

Similarly, if s ∈ Q and δ is the σ-derivation corresponding to y ∈ L1, then

ys = σ(s)y + δ(s).

Now, if r ∈ R, let
v = arw − wσM(ra).

In light of the multiplication in Q#u(L), we see that the coefficient of ∆1 in v is

ara− aσM(σM(ra)) = ara− ara = 0.

Thus v is an element of B of degree at most N having fewer degree N monomials in its support
than w. Therefore, by the minimality of w, we have v = 0.

For k > 1, let ak denote the coefficient of ∆k in w. Suppose that, for some ∆k, we have
M 6= M∆k

. Since M and M∆k
differ by 1, the coefficient of ∆k in v is

0 = arak − akσ(r)a.

Thus, for all r ∈ R, arak = akσ(r)a. Since ak 6= 0, this contradicts the fact that σ is X-outer.
Therefore M = M∆k

, for every ∆k.
As a result, for k > 1, the coefficient of ∆k in v is 0 = arak − akra. Thus arak = akra,

for all r ∈ R, which implies that there exists some λk ∈ C such that ak = λka. If we let b
denote the coefficient of η in w, then our argument now splits into the cases where M = Mη

and M 6= Mη.
If M = Mη, let dk be the derivation corresponding to the element of L0 where the exponent

in ∆k exceeds the exponent in η. If we let r ∈ R, then

arak∆k − ak∆kσ
M(ra) = −ikakdk(ra)η

+ other terms of degree at most N − 1.

This implies that the coefficient of η in v is

arb− bra−
∑

λkikadk(ra).

Since v = 0, this implies that ∑
ikλkadk(ra) = arb− bra.

By the result of Bergen and Montgomery [BM], this implies that the derivation
∑
ikλkdk

is X-inner. Since λ1 = 1 and ii is invertible in C, we have obtained the contradiction that∑
ikλkdk is a nonzero element of Linn.
Thus we are now in the case where M and Mη differ by 1. If we let r ∈ R, then

arak∆k − ak∆kσ
M(ra) = −akδk(ra)η

+ other terms of degree at most N − 1.

This implies that the coefficient of η in v is

arb− bσ(ra)−
∑

λkaδk(ra).
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Since v = 0, this implies that ∑
λkaδ(ra) = arb− bσ(r)a.

Proposition 8 implies that the σ-derivation
∑
λkδk is X-inner. Since λ1 = 1, we have obtained

the contradiction that
∑
λkδk is a nonzero element of Linn, thereby concluding the proof. �

Our main result will deal with graded-reduced rings. Such rings are always semiprime but
need not be prime. Therefore we need to extend Proposition 9 from prime rings to semiprime
rings.

Corollary 10. Let R be a semiprime ring with extended center C acted on by the finitely
generated restricted C-Lie superalgebra L. In addition, suppose that the action of L is C-
linear and the action of σ is both X-outer and C-linear. If Linn = 0, then every nonzero
(R,R)-bimodule of Q#u(L) intersects R nontrivially.

Proof. Let B be a nonzero (R,R)-bimodule of Q#u(L) and let M be a maximal ideal of C.
Since the actions of σ and L are C-linear, there are induced actions of σ and L on Q̄. We can
let σ̄ denote the automorphism and L̄ the C̄-Lie superalgebra corresponding to these induced
actions on Q̄. Now choose M so that the image B̄ of B in Q̄#u(L̄) is nonzero.

We first need to show that the action of σ̄ is X-outer. By way of contradiction, suppose
there exists some a ∈ Q such that ā is nonzero in Q̄ and

ār̄ = σ̄(r̄)ā,

for all r ∈ R. This means that there exists some c ∈ C\M such that

(ca)r = σ(r)(ca),

for all r ∈ R. Since c̄ is invertible in C̄, ca is nonzero in Q̄, hence ca is nonzero in Q. But this
contradicts the fact that σ is X-outer on R. Thus σ̄ is X-outer on R̄.

Next, we claim that L̄inn = 0. If not, then there exist q ∈ Q, ci ∈ C, and δi ∈ L such
that every c̄i is nonzero and

∑
c̄iδ̄i is the derivation or σ̄-derivation of Q̄ induced by q̄. This

means that there exists some c ∈ C\M such that
∑
cciδi is the derivation or σ-derivation of

Q induced by cq. Since Linn = 0, this implies that cci = 0, for all i, but this contradicts the
fact that each c̄i is nonzero.

Having shown that σ̄ is X-outer and L̄inn = 0, we can apply Proposition 9 to assert that
B̄ ∩ Q̄ 6= 0. Therefore there exists some 0 6= f̄ ∈ B̄ ∩ Q̄ such than f is of the form

f = a0 +
∑

a∆∆ ∈ Q#u(L),

where ∆ runs through the Poincaré-Birkhoff-Witt monomials of u(L) other than 1 and a0, a∆ ∈
Q. Since f̄ ∈ Q̄, there exists some c ∈ C\M such that ca0 6= 0 and ca∆ = 0, for all ∆. Thus
cf is a nonzero element of B ∩Q and so, B intersects Q nontrivially. �

Finite dimensional Hopf algebras H are Frobenius algebras and therefore contain nonzero
elements

∫
, known as left integrals, such that ω(H)

∫
= 0, where ω(H) is the augmentation

ideal of H. It then follows that whenever H acts on a ring R, then the action of
∫

sends R
into RH . Thus the existence of left integrals is very useful in producing invariants. In our
situation, since C need not be a field, we are not automatically guaranteed that u(L) contains
a nonzero element t such that Lt = 0. However, the next lemma shows that such an element
does indeed exist in our case.
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Lemma 11. Let R be a semiprime ring with extended center C acted on by the finitely
generated restricted C-Lie superalgebra L. If the action of L is C-linear, then there exists a
nonzero element t ∈ u(L) such that Lt = 0.

Proof. Let x1, . . . , xn generate L as a C-module and let M be a maximal ideal of C. As in
the proof of Lemma 10, every element of L also acts on Q̄ and we can let L̄ denote the Lie
superalgebra over the field C̄ induced by the action of L on Q̄. Observe that if we localize
u(L) at M to obtain u(L), then u(L) = u(L̄). Since u(L̄) is a Frobenius algebra, so is u(L).

As a result, u(L) contains a nonzero element
∫

such that x̄i
∫

= 0, for all i.

Note that there exists c ∈ C\M and w ∈ u(L) such that c
∫

is the image in u(L) of w.
Therefore, for each i, there exists some ci ∈ C\M such that cixiw = 0. Finally, let

t = (c1 · · · cn)w.

Then t is a nonzero element of u(L) such that xit = 0, for all i. Hence Lt = 0, as desired. �

Our next lemma is a slight generalization of [BG, Lemma 3.2]. It shows that, with the in-
sertion of various idempotents, modules over commutative von Neumann regular rings behave
very much like vector spaces over fields.

Lemma 12. Let M = Cx1 + · · · + Cxn be a finitely generated C-module and N a proper
submodule, where C is a commutative von Neumann regular ring. Then there exists a nonzero
idempotent e ∈ C and a re-ordering of the xi such that eM 6= 0 and

eM = (Cex1 + · · ·+ Cexm)⊕ eN,
where m < n and eN is generated over C by at most n−m elements.

Proof. Suppose e1 is a nonzero idempotent of C such that e1M 6= 0 and

e1M = (Ce1x1 + · · ·+ Ce1xk) + e1N,

where k ≤ n. If
(Ce1x1 + · · ·+ Ce1xk) ∩ e1N 6= 0,

let w = c1e1x1 + · · · + cke1xk belong to this intersection, where each ci ∈ C. By re-ordering
the set {x1, . . . , xk}, we may assume that cke1xk 6= 0. Since C is von Neumann regular, there
exists c ∈ C such that ck

2c = ck. Therefore f = cck is a nonzero idempotent such that

fe1xk = cw − cc1e1x1 − · · · − cck−1e1xk−1.

Observe that fe1xk 6= 0, since ckfe1xk = cck
2e1xk = cke1xk 6= 0. As a result,

0 6= fe1M = Cfe1x1 + · · ·+ Cfe1xk−1 + fe1N.

This says that if (Ce1x1 + · · ·Ce1xk) ∩ e1N 6= 0, then there exists an idempotent e2 = fe1

such that we can re-order the elements of {e1x1, . . . , e1xk} and then replace it by the smaller
set {e2x1, . . . , e2xk−1}.

Starting with the idempotent 1 and the set {x1, . . . , xn}, it is certainly true that

1M 6= 0, 1M = Cx1 + · · ·+ Cxn + 1N, and (Cx1 + · · ·+ Cxn) ∩ 1N 6= 0.

Therefore we can repeatedly apply the above procedure to produce a nonzero idempotent
e ∈ C such that eM 6= 0 and

eM = (Cex1 + · · ·+ Cexm)⊕ eN,
where m < n.



18 JEFFREY BERGEN, PIOTR GRZESZCZUK, AND MA LGORZATA HRYNIEWICKA

Finally, since eN ' eM/(Cex1 + · · ·+Cexm), it follows that eN is generated over C by at
most n−m elements. �

We now have all the pieces needed to prove the main result of this paper.

Theorem 13. If R is a graded-reduced ring of characteristic p > 2 acted on by a finitely
generated restricted K-Lie superalgebra L, where K ⊆ C0, then RL 6= 0.

Proof. We will proceed by induction by showing that, for every positive integer n, whenever
a graded-reduced ring R is acted on by a restricted K-Lie superalgebra L such that

K ⊆ C0, L0 = Kx1 + · · ·+Kxs, L1 = Ky1 + · · ·+Kyt, and n = s+ t,

then it must be the case that RL 6= 0. We begin with the case where n = 1; therefore either
s = 1 or t = 1. If s = 1, then L is a Lie algebra and the result follows by applying either
the result of Beidar and Grzeszczuk [BG] or more general results on the actions of a single
algebraic derivation. On the other hand, if t = 1 and if δ is the σ-derivation corresponding to
the action of y1, then δ2 = 0. Thus δ clearly has nonzero invariants and so, RL 6= 0. Having
shown that RL 6= 0 in the n = 1 case, we may now assume that n > 1.

By Lemma 7, if the action of either L1 and σ fails to be C-linear, then RL 6= 0. Therefore,
for the remainder of the proof, we may assume that the actions of both L1 and σ are C-linear.
Since we are now in the case where C = C0, it follows that Derσ(R,Q) is a module over
C. We can let CL,CL0, CL1 denote the C-submodules of Derσ(R,Q) generated by L,L0, L1,
respectively. Although the action of L1 is C-linear, it is possible that the action of L0 is
not C-linear. Although CL0 is a C-module which is both a Lie ring and closed under taking
pth powers, it is not technically a Lie algebra over C. In the work of Kharchenko [K3] and
Beidar-Grzeszczuk [BG], these objects are referred to as restricted Lie ∂-algebras. In [BG], it
is shown that whenever a restricted Lie ∂-algebra L0 is finitely generated over C and acts on
a reduced ring R, then RL0 6= 0.

Let U be the restricted subalgebra of CL generated over C by L1. Since

[L1, L1]⊕ L1

is an ideal of L, it is clear that U is an ideal of the Lie superring CL. In addition, since every
element of L1 is C-linear, U is a Lie superalgebra over C. By Lemma 12, there exists some
e = e2 ∈ C such that eU 6= 0 and either eCL = eU or eU is generated over C by fewer than
n elements.

In the latter case, let J be a σ-stable essential ideal of R such that Je ⊆ R. Lemma 1(3)
tells us that eU is a restricted Lie superalgebra over Ce acting on Je. To show that RL 6= 0,
it suffices to show that (Je)eL 6= 0. Therefore, without loss of generality, we may reduce down
the case where U is generated over C by less that n elements. Now, let M 6= 0 be a σ-stable
ideal of R. By Lemma 1(2), there exists some f = f 2 ∈ C such that fU 6= 0 and fU acts
on M so that we can identify this action with the action of U on M . However, since fU is
generated over Cf by less than n generators, the induction hypothesis implies that fU acts
on M with nonzero invariants. Thus

QU ∩M = MU 6= 0.

Furthermore, since U is an ideal of CL, it follows that QU is L-stable. By Lemma 2(2), L
acts on RU and the Lie algebra L0 acts on (RU)0. By the result of Beidar-Grzeszczuk [BG],
((RU)0)L0 6= 0. However,

((RU)0)L0 ⊆ RL.
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Thus, in this case, RL 6= 0.
The remaining case is that eCL = eU . By Lemma 1(3), there exists a σ-stable essential

ideal J of R such that eU acts on Je. Since it now suffices to show that (Je)eU 6= 0, without
loss of generality, we can assume that L = U . As a result, all elements of L are C-linear and
we can consider L to be a Lie superalgebra over C. Therefore, without loss of generality, may
assume that L = CL,L0 = CL0, and L1 = CL1. If the sum

L = Cx1 + · · ·+ Cxs + Cy1 + · · ·+ Cyt,

where n = s + t, is not direct that there is an idempotent e ∈ C such that eL is generated
over Ce by less than n generators. In this case, nonzero invariants would exist by applying
the induction hypothesis to the action of eL on a suitable nonzero ideal of R. Therefore we
may reduce to the case where

L = Cx1 ⊕ · · · ⊕ Cxs ⊕ Cy1 ⊕ · · · ⊕ Cyt.
The remainder of the proof now splits into cases where either Linn = 0 or Linn 6= 0.

For the moment, let us assume that Linn = 0. Since the action of both L and σ are C-linear,
we can apply Lemma 11 to assert that there exists some t 6= 0 such that Lt = 0 in u(L). Since
Lt = 0, it is clear that t(R) ⊆ QL. Let J be an essential ideal of R such that t(J) ⊆ R and let

B = {b ∈ Q#u(L) | b(J) = 0}.
Certainly B is an (R,R)-bimodule of Q#u(L). If Linn = 0 and if B 6= 0, we can apply
Corollary 10 to see that B ∩ R 6= 0. However, if a is a nonzero element of B ∩ R, the action
of a on J is via left multiplication. But this leads to the contradiction aJ = 0. Thus B = 0
and so,

0 6= t(J) ⊆ RL.

Hence, in this case, RL 6= 0.
For our final case, we may assume that Linn 6= 0. By Lemma 12, there exists e = e2 ∈ C

and a re-ordering of the xi and yj such that eLinn 6= 0 and

eL = (Cex1 ⊕ · · · ⊕ Cexs′ ⊕ Cey1 ⊕ · · · ⊕ Ceyt′)⊕ eLinn,
where s′ + t′ < n. Since it suffices to show that eL acts with nonzero invariants, Lemma 1(3)
allows us to reduce to the case where

L = (Cx1 ⊕ · · · ⊕ Cxs′ ⊕ Cy1 ⊕ · · · ⊕ Cyt′)⊕ Linn,
where s′ + t′ < n.

In light of Lemma 4 and Lemma 2(2), RLinn 6= 0 and L acts on RLinn . But this implies that
the quotient superalgebra L/Linn acts on RLinn . However L/Linn is generated over C by less
than n elements, therefore the induction hypothesis implies that

(RLinn)L/Linn 6= 0.

Since
RL = (RLinn)L/Linn ,

we have succeeded in showing that RL 6= 0. �

The question which motivated this paper dealt with the existence of nonzero invariants
when reduced rings were acted on by finite dimensional Hopf algebras. Recall that if L1 6= 0,
then u(L) is not a Hopf algebra but the smash product H = u(L)#G is a Hopf algebra
which is neither commutative nor cocommutative. Using Theorem 13, it is now easy to prove
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that every nonzero H-stable subring of a reduced ring R acted on by H = u(L)#G contains
nonzero invariants.

Corollary 14. Let R be a reduced algebra over a field K of characteristic p > 2 acted on by a
finite dimensional restricted K-Lie superalgebra L and let H = u(L)#G, where G is the group
of order 2 with the natural action on L. Then AH 6= 0, for every nonzero H-stable subalgebra
A of R

Proof. First observe that since A is a subalgebra of R, the field K embeds in the even part
of the extended center of A. Next, since A is H-stable, it follows that δ(A) ⊆ A, for all
δ ∈ L0 ∪ L1. Therefore L acts on A and we can apply Theorem 13 to assert that AL 6= 0.
Since σ commutes with the elements of L0 and anti-commutes with the elements of L1, it is
clear AL is G-stable. Since A is reduced, Kharchenko’s result [K1] on group actions or a direct
calculation shows that (AL)G 6= 0. However,

AH = (AL)G,

thus AH 6= 0, as desired. �

The existence of nonzero invariants provided by Corollary 14 can be combined with a recent
result of Grzeszczuk and Hryniewicka [GH2, Theorem 4] to provide us with the final result of
this paper.

Corollary 15. Let R be a reduced algebra over a field K of characteristic p > 2 acted on by
a finite dimensional restricted K-Lie superalgebra L and let H = u(L)#G, where G is the
group of order 2 with the natural action on L. If RH satisfies a polynomial identity of degree
d, then R satisfies a polynomial identity of degree dN , where N is the dimension of H.

Proof. Theorem 4 of [GH2] examines the situation where reduced rings R are acted on by
finite dimensional pointed Hopf algebras H such that every nonzero H-stable left ideal of R
contains nonzero invariants. In this situation, they show that if RH satisfies a polynomial
identity of degree d, then R satisfies a polynomial identity of degree dN , where N is the
dimension of H.

In light of Corollary 14 and the fact that H = u(L)#G is pointed, the result in [GH2] can
immediately be applied to our situation, thereby proving the result. �
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