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JACOBSON RADICALS OF RING EXTENSIONS

JEFFREY BERGEN AND PIOTR GRZESZCZUK

Streszczenie. We extend existing results on the Jacobson radical of skew polynomial rings
of derivation type when the base ring has no nonzero nil ideals. We then move to the more
general situation of algebras with locally nilpotent skew derivations and examine the Jacobson
radical of the algebra when the subalgebra of invariants has no nonzero nil ideals.

In [1], Amitsur showed that if R has no nonzero nil ideals, then the Jacobson radical of
the polynomial ring R[x] is 0. Subsequently, there has been a great deal of work examining
the Jacobson radicals of more general ring extensions such as skew polynomial rings of auto-
morphism type and of derivation type. For skew polynomial rings R[x;σ] of automorphism
type, it was shown in [2] that even if R is commutative and reduced, then J(R[x;σ]) can be
nonzero. For skew polynomial rings R[x; δ] of derivation type, it is still unknown if J(R[x; δ])
must be zero when R has no nonzero nil ideals.

Although the situation regarding J(R[x; δ]) is still open, it was shown in [5] and [7] that if one
assumes either that R is reduced or satisfies a polynomial identity or satisfies the ascending
chain condition on right annihilators, then J(R[x; δ]) = 0 whenever R has no nonzero nil
ideals. The condition that R satisfies the ascending chain conditions on right annihilators
of powers is weaker than R either being reduced or satisfying the ascending chain condition
on annihilators. Also, for semiprime rings, the condition that every ideal of R contains a
normalizing element is weaker than R satisfying a polynomial identity. Therefore our first two
main results, which we now state, extend existing results on J(R[x; δ]).

Theorem 2. Let R be an algebra with no nonzero nil ideals satisfying the acc on right
annihilators of powers.

(1) If δ is a derivation of R, then J(R[x; δ]) = 0.
(2) If L is a Lie algebra acting on R as derivations, then J(R#U(L)) = 0.

Theorem 3. Let R be a semiprime algebra where every nonzero ideal contains a normalizing
element.

(1) If δ is a derivation of R, then J(R[x; δ]) = 0.
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(2) If L is a Lie algebra acting on R as derivations, then J(R#U(L)) = 0.

Next, suppose that B is an algebra with a q-skew derivation δ, where either q is not a root
of 1 or R has characteristic 0 and q = 1. It is shown in [3] that the skew polynomial ring
B[x;σ, δ] has a locally nilpotent q−1-skew σ−1-derivation d such that the B is the subalgebra
of constants of d. Therefore, we can think of the relationship between an algebra and a skew
polynomial extension as being a special case of the relationship between the subalgebra of
constants of a locally nilpotent q-skew derivation and the original algebra.

Therefore it is natural to examine algebras R with a locally nilpotent q-skew σ-derivation d
such that Rd has no nonzero nil ideals and then try examine when J(R) is 0. If we look at the
example in [2] on skew polynomial rings in the context of algebras R with locally nilpotent
skew derivation d, it shows that J(R) need not be 0, even if the constants of d are commutative
and reduced. However, our next two main results, which we state below, illustrate there are
many cases in which J(R) is equal to 0.

Theorem 5. Let R be an algebra with a locally nilpotent regular q-skew σ-derivation d, where
either q is not a root of 1 or R has characteristic 0 and q = 1. If Rd is semiprime Goldie,
then J(R) = 0.

Theorem 10. Let R be an algebra of characteristic 0 with a locally nilpotent regular σ-
derivation d such that dσ = σd. If Rd has no nonzero nil ideals, then J(R) = 0 in all of the
following cases:

(1) d is a derivation and Rd satisfies the acc on right annihilators of powers,
(2) σ has locally finite order, R is an algebra over an uncountable field, and Rd satisfies

the acc on right annihilators of powers,
(3) σ has locally finite order and Rd satisfies the acc on right annihilators,
(4) σ has locally finite order and Rd is reduced,
(5) σ has locally finite order and Rd satisfies a polynomial identity.

Observe that if d = 0, then Rd = R and it is certainly possible that Rd has no nonzero
nil ideals, yet J(R) is not equal to 0. To avoid this type of situation, Theorems 5 and 10
both have the additional assumption that d is regular. This is a technical condition that is
satisfied in many cases. In particular, the locally nilpotent q-skew derivation of B[x;σ] having
B as its constants is regular. If we remove the assumption that d is regular, then we can
prove Theorems 6 and 11 in which we show that there are many cases in which J(Rd) being
0 implies that J(R) = 0.

We will now introduce the terminology and notation that will be used throughout the
paper. R will be an algebra with multiplicative identity over a field K. If σ is a K-linear
automorphism of R, then a σ-derivation d is a K-linear map d : R → R such that

d(rs) = d(r)s+ σ(r)d(s),

for all r, s ∈ R. The ring of constants Rd is defined as

Rd = {r ∈ R | d(r) = 0}.
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A σ-derivation d is said to be locally nilpotent if for every r ∈ R, there exists n = n(r) ≥ 1
such that dn(r) = 0. If q is a nonzero element of K, we say that our σ-derivation is q-skew if

dσ(r) = qσd(r),

for all r ∈ R. For n ≥ 1, let

(n!)q =
n∏

k=1

(1 + q + · · ·+ qk−1).

Then the q-binomial coefficient
(
n
i

)
q
is defined as evaluation at t = q of the polynomial function(

n

i

)
t

=
(tn − 1)(tn−1 − 1) . . . (tn−i+1 − 1)

(ti − 1)(ti−1 − 1) . . . (t− 1)
.

If q is not a root of unity, then (
n

k

)
q

=
(n!)q

((n− k)!)q(k!)q

is nonzero for all n > k > 0.

The following q-Leibniz Rule holds in a ring with q-skew σ-derivation d.

dn(ab) =
n∑

j=0

(
n

j

)
q

σn−jdj(a)dn−j(b)

for all a, b ∈ R and n > 0.

For m > 0, let Rm = ker dm+1. Clearly, d is locally nilpotent if and only if R =
∪
m>0

Rm.

By the degree of an element a ∈ R, which we denote as deg(a), we mean the integer n such
that a ∈ Rn but a ̸∈ Rn−1. The q-Leibniz Rule implies that RnRm ⊆ Rn+m, so R is a filtered
algebra, with R0 = Rd.

For subsets A,B of a ring R, we let r. annA(B) = {a ∈ A | Ba = 0}. We say that R satisfies
the acc on right annihilators of powers if, for every r ∈ R, there exists n ≥ 1 such that

r. annR(r) ⊆ r. annR(r
2) ⊆ · · · ⊆ r. annR(r

n) = r. annR(r
n+1) = · · · .

Observe that satisfying the acc on right annihilators of powers is a weaker condition than either
satisfying the acc on right annihilators or being reduced. When d is a locally nilpotent σ-
derivation of a ring R, we say that d is right regular (or simply regular) if r. annRd(d(R)∩Rd) =
0. Observe that d being regular is equivalent to r. annR(d(R) ∩Rd) = 0.

If 0 ̸= r ∈ R, we say that r is normalizing if rR = Rr. Semiprime rings satisfying a
polynomial identity have the property that every nonzero ideal contains a nonzero central
element. Observe that, for semiprime rings R, the condition that every nonzero ideal contains
a normalizing element is weaker that the condition that R satisfies a polynomial identity.

We say that an automorphism σ has locally finite order if, for every r ∈ R, then exists n ≥ 1
such that σn(r) = r. Observe that if d ̸= 0 is a q-skew σ-derivation and if σ has locally finite
order, then q must be a root of 1.

We begin our work with
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Lemma 1. Let R be an algebra with derivation δ. If a ∈ J(R[x; δ])∩R such that r. annR(a) =
r. annR(a

2), then a = 0.

Dowód. Since a ∈ J(R[x; δ]), it follows that xa ∈ J(R[x; δ]). Therefore xa has a quasi-inverse
b(x) = bnx

n + · · ·+ b1x+ b0 ∈ R[x; δ] and we have

(1) xa+ (bnx
n + · · ·+ b1x+ b0) = xa(bnx

n + · · ·+ b1x+ b0).

If ab(x) = 0, then multiplying (1) on the left by a gives us axa = 0. Since axa = a2x+ aδ(a),
we see that a2 = 0. As a result, r. annR(a) = r. annR(a

2) = R, which immediately implies that
a = 0.

Now suppose that ab(x) ̸= 0; therefore there is a largest integer m ≥ 0 such that abm ̸= 0.
Multiplying equation (1) on the left by a now gives us

(2) axa+ (abmx
m + · · ·+ ab1x+ ab0) = axa(bmx

m + · · ·+ b1x+ b0).

Since bm /∈ r. annR(a), it follows that bm /∈ r. annR(a
2) and a2bm ̸= 0. Therefore the right

hand side of equation (2) has degree m+ 1 as the coefficient of xm+1 is a2bm. If m ≥ 1, then
the degree of the right hand side of equation (2) exceeds the degree of the left hand side, a
contradiction. Thus m = 0 and equation (2) now becomes

(3) axa+ ab0 = axab0.

If we look at the coefficient of x on each side of equation (3), we see that a2 = a2b0. Therefore
1− b0 ∈ r. annR(a

2) = r. annR(a), hence a = ab0. At this point, equation (3) simplifies to

axa+ a = axa,

hence a = 0, contradicting the assumption that ab(x) ̸= 0. Thus a = 0, as required. �
The construction of R[x; δ] using a single derivation can be extended to construct the smash

product R#U(L), where L is a Lie algebra acting on R as derivations and U(L) is the universal
enveloping algebra of L. For more details on R#U(L), we refer the reader to [5]. We can now
prove our first main result on the Jacobson radical.

Theorem 2. Let R be an algebra with no nonzero nil ideals satisfying the acc on right anni-
hilators of powers.

(1) If δ is a derivation of R, then J(R[x; δ]) = 0.
(2) If L is a Lie algebra acting on R as derivations, then J(R#U(L)) = 0.

Dowód. By way of contradiction, in order to prove part (1), we will assume that J(R[x; δ]) ̸= 0.
Since R has no nonzero nil ideals, a special case of Proposition 3.7 of [5] asserts J(R[x; δ])∩R ̸=
0. If α ∈ J(R[x; δ]) ∩ R, then the acc condition on right annihilators of powers implies that
there exists n ≥ 1 such that r. annR(α

n) = r. annR(α
n+1). If we let a = αn, it follows that

r. annR(a) = r. annR(a
2). However, Lemma 1 tells us that a = 0, hence αn = 0. Therefore

every element of J(R[x; δ]) ∩ R is nilpotent, contradicting the assumption that R has no
nonzero nil ideals. Thus J(R[x; δ]) = 0, proving part (1).

For part (2), by way of contradiction, we will assume that J(R#U(L)) ̸= 0. Since R has
no nonzero nil ideals, Proposition 3.7 of [5] asserts that J(R#U(L)) ∩ R ̸= 0. Next, let
0 ̸= x ∈ L and let δ be the derivation of R corresponding to x. A well known consequence of
the Poincaré-Birkhoff-Witt theorem, which can be found in Lemma 3.8 of [5], tells us that

J(R#U(L)) ∩R[x; δ] ⊆ J(R[x; δ]).
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However, part (1) showed that J(R[x; δ]) = 0. Therefore, we now have

0 ̸= J(R#U(L)) ∩R ⊆ J(R#U(L)) ∩R[x; δ] ⊆ J(R[x; δ]) = 0,

a contradiction. Thus J(R#U(L)) = 0, proving part (2). �

We can also use Lemma 1 to prove our second main result.

Theorem 3. Let R be a semiprime algebra where every nonzero ideal contains a normalizing
element.

(1) If δ is a derivation of R, then J(R[x; δ]) = 0.
(2) If L is a Lie algebra acting on R as derivations, then J(R#U(L)) = 0.

Dowód. The proof of part (2) will follow from part (1) in the identical manner as in Theorem
2. Therefore, it will suffice to prove part (1). As in the proof of Theorem 2, by way of
contradiction, we will assume that J(R[x; δ]) ̸= 0 and it again follows that J(R[x; δ])∩R ̸= 0.
Therefore there exists a normalizing element a ∈ J(R[x; δ])∩R. Since aR = Ra, observe that
if b ∈ r. annR(a

2) we have

(Rab)2 = (Rab)(Rab) ⊆ R(aR)ab = R(Ra)ab = Ra2b = 0.

Therefore Rab is a nilpotent left ideal of R, which implies that Rab = 0. As a result, ab = 0
and b ∈ r. annR(a). Having shown that r. annR(a) = r. annR(a

2), we can apply Lemma 1
to conclude that a = 0. However this contradicts that a is normalizing, thus it is the case
J(R[x; δ]) = 0, proving (1). �

For the remainder of this paper, we will examine algebras R with a locally nilpotent q-skew
σ-derivation d. We will focus on conditions on Rd that will guarantee that J(R) = 0.

Lemma 4. Let R be an algebra with a locally nilpotent q-skew σ-derivation d, where either
q is not a root of 1 or R has characteristic 0 and q = 1. If Rd is semiprime Goldie and
J(R) ̸= 0, then J(R) ∩Rd ̸= 0.

Dowód. Let n denote the smallest degree of a nonzero element of J(R). If n = 0, there is
nothing to prove. Therefore, by way of contradiction, we will assume that n > 0. Next, let
A be the elements of J(R) of degree n and consider the set dn(A) ∪ {0}. Since d is q-skew,
we know that σi(Rd) = Rd, for all i ∈ Z. If α ∈ Rd and a ∈ A, then σ−n(α)a, aα ∈ A, which
implies that

(4) αdn(a) = dn(σ−n(α)a) ∈ dn(A) ∪ {0} and dn(a)α = dn(aα) ∈ dn(A) ∪ {0}.

Thus dn(A) ∪ {0} is an ideal of Rd.

We now let C = r. annRd(dn(A) ∪ {0}) and B = r. annRd(C). Since B is the annihilator
of an ideal in Rd and dn(A) ∪ {0} is an essential ideal of B, it follows that there exists some
a ∈ A such that dn(a) is regular in B. The set C is σ-stable and is certainly both the left
and right annihilator of dn(A) in Rd. Therefore if we now suppose that the element α from
equation (4) also belongs to C, then equation (4) becomes

dn(σ−n(α)a) = αdn(a) ∈ Cdn(A) = 0 and dn(aα) = dn(a)α ∈ dn(A)C = 0.

Thus σ−n(α)a, aα are elements of J(R) with degrees less than n, hence they must both be 0.
This tells us that Ca = aC = 0.
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Since a ∈ J(R), it has a quasi-inverse r ∈ R and we have

(5) a+ r = ar = ra.

If α ∈ C, then multiplying this equation on the right by α gives us rα = 0, whereas multiplying
it on the left by α gives us αr = 0. Thus Cr = rC = 0. Furthermore, if we let m denote the
degree of d on r, then dm(r) ∈ Rd and

0 = dm(rC) = dm(r)C.

Since B is both the left and right annihilator of C in Rd, the equation above shows that
dm(r) ∈ B. If m > 0, then n +m exceeds both n and m and applying dn+m to equation (5)
gives us

0 = dn+m(a+ r) = dn+m(ar) =

(
n+m

n

)
q

σm(dn(a))dm(r)

However, this is a contradiction as σm(dn(a)) is a regular element of B, dm(r) is a nonzero
element of B, and

(
n+m
n

)
q
is a nonzero element of the base field. In light of this, it must be

the case that m = 0. However, if we now apply d to equation (5), we obtain

d(a) = d(a)r.

If we multiply equation (5) on the left by d(a), it now simplifies down to

d(a)a+ d(a) = d(a)a.

This immediately implies that d(a) = 0, which contradicts that a has degree n > 0, concluding
the proof. �

We can now prove our third main result.

Theorem 5. Let R be an algebra with a locally nilpotent regular q-skew σ-derivation d, where
either q is not a root of 1 or R has characteristic 0 and q = 1. If Rd is semiprime Goldie,
then J(R) = 0.

Dowód. Suppose, by way of contradiction, that J(R) ̸= 0. Then, by Lemma 4, J(R)∩Rd ̸= 0.
Let C = r. annRd(J(R)∩Rd) and B = r. annRd(C). Since d is regular, d(R)∩Rd is an essential
ideal of Rd. Combined with the fact that J(R) ∩Rd is an essential ideal of B, we see that

(J(R) ∩Rd) ∩ (d(R) ∩Rd) = J(R) ∩Rd ∩ d(R)

is an essential ideal of B. Therefore there exists some a ∈ J(R) ∩ Rd ∩ d(R) such that a is
regular in B and a = d(x), for some x ∈ R. Since xa ∈ J(R), it has a quasi-inverse r ∈ R and
we have

(6) xa+ r = rxa = xar

If we multiply equation (6) on the right by C, we see that rC = 0. If m is the degree of
r and we apply dm to rC, we obtain 0 = dm(rC) = dm(r)C. Since C has the same left and
right annihilators in Rd and dm(r) ∈ Rd, it follows that dm(r) is a nonzero element of B. If
m > 0, then dm+1(xa) = dm+1(r) = 0 and applying dm+1 to equation (6) gives us

0 = dm+1(xar) =

(
m+ 1

1

)
q

σm(d(xa))dm(r) =

(
m+ 1

1

)
q

a2dm(r).
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However, this is a contradiction as a2 is a regular element of B, dm(r) is a nonzero element of
B, and

(
m+1
1

)
q
is a nonzero element of the base field. Therefore, it must be that m = 0. If we

now apply d to equation (6), we obtain

a2 = a2r.

This implies that a2(1 − r) = 0, which is a contradiction as 1 − r is invertible in R and a is
not nilpotent. Thus J(R) = 0, �
If we remove the condition that d is regular, we can adapt Theorem 5 to the situation where

J(Rd) = 0.

Theorem 6. Let R be an algebra with a locally nilpotent q-skew σ-derivation d, where either
q is not a root of 1 or R has characteristic 0 and q = 1. If Rd is Goldie with J(Rd) = 0, then
J(R) = 0.

Dowód. By Proposition 1 of [4], there exist ideals A and B of R which are d-stable and σ-
stable such that B ⊆ Rd, A = r. annR(B), r. annR(A ⊕ B) = 0, and r. annA(d(A) ∩ Ad) = 0.
Observe that Ad = r. annRd(B), thus Ad is the annihilator of an ideal of Rd and is therefore
also a semiprime Goldie ring. However, the condition that r. annA(d(A)∩Ad) = 0 is equivalent
to d being regular when restricted to A. Therefore we can apply Theorem 5 to A to conclude
that J(A) = 0.

Next, if J(B) ̸= 0, then BJ(B)B is a nonzero quasi-regular ideal of Rd. contradicting that
J(Rd) = 0. Therefore it is also the case that J(B) = 0. Since J(A) = J(B) = 0, we also know
that J(A⊕B) = J(A)⊕J(B) = 0. Finally, since A⊕B is an essential ideal of R, if J(R) ̸= 0,
then (A⊕B) ∩ J(R) is a nonzero quasi-regular ideal of R contained in A⊕ B. However this
contradicts the fact that J(A⊕B) = 0, proving the result. �
For the remainder of this paper, we will restrict our work to algebras in characteristic 0.

Lemma 7. Let S be an algebra of characteristic 0 (not necessarily with 1) with no nil ideals
and an automorphism σ of locally finite order. Then Sσ is not nil if any of the following
conditions hold:

(1) S is reduced,
(2) S is an algebra over an uncountable field,
(3) S satisfies the acc on right annihilators,
(4) S satisfies a polynomial identity.

Dowód. Let b ∈ S such that b is not nilpotent and then let n ≥ 1 be such that σn(b) = b.
Observe that σ has finite order when acting on Sσn

and the fixed ring of this action is also
Sσ. Since Sσn

is not nilpotent, the Bergman-Isaacs theorem [6] asserts that Sσ is also not
nilpotent. Note that handles case (1) for if Sσ ̸= 0, then it is also not nil.

For case (2), by way of contradiction, suppose Sσ is nil. The previous paragraph asserts
that there exists some nonzero a ∈ Sσ. Now let t ∈ SaS and let m ≥ 1 be such that σm(t) = t.
The automorphism σ now acts with finite order on Sσm

with fixed ring Sσ. If the ground field
is uncountable, then Sσ being nil implies that Sσm

is also nil. Thus t is nilpotent, hence SaS
is a nil ideal of S, a contradiction. This completes case (2).

For case (3), since S satisfies the acc on right annihilators, so does Sσ. In this situation, Sσ

being nil implies that it contains a nonzero nilpotent ideal I. If a is a nonzero element of I,
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let t ∈ SaS. Therefore, there exist ri, si ∈ S such that t =
∑

i riasi and there exists let m ≥ 1
such that each ri and si is fixed by σm. Therefore t ∈ Sσm

aSσm
. Another application of the

Bergman-Isaacs theorem is that

P (Sσ) = P (Sσm

) ∩ Sσ,

where P (Sσ) and P (Sσm
) are, respectively, the prime radicals of Sσ and Sσm

. Since a ∈ I ⊆
P (Sσ), it follows that a ∈ P (Sσm

), which implies that t ∈ Sσm
aSσm ⊆ P (Sσm

). However,
the prime radical of a ring is always nil, hence t is nilpotent. Thus SaS is a nil ideal of S, a
contradiction. This completes case (3).

The proof of case (3) was based on Sσ containing a nonzero nilpotent ideal. However, if Sσ

is nil and satisfies a polynomial identity, then Sσ again contains a nonzero nilpotent ideal I.
From this point on, the proof of case (4) is the same as the proof of case (3). �
Although in a different setting, the next lemma is somewhat similar to Lemma 4.

Lemma 8. Let R be an algebra of characteristic 0 with a locally nilpotent σ-derivation d such
that dσ = σd. If Rd has no nonzero nil ideals and J(R) ̸= 0, then J(R)∩Rd ̸= 0 in all of the
following cases:

(1) d is a derivation and Rd satisfies the acc on right annihilators of powers,
(2) σ has locally finite order, R is an algebra over an uncountable field, and Rd satisfies

the acc on right annihilators of powers,
(3) σ has locally finite order and Rd satisfies the acc on right annihilators,
(4) σ has locally finite order and Rd is reduced,
(5) σ has locally finite order and Rd satisfies a polynomial identity.

Dowód. The beginning of this proof is that same as the beginning of the proof of Lemma 4.
We let n denote the smallest degree of a nonzero element of J(R) and if n = 0, there is nothing
to prove. By way of contradiction, we will assume that n > 0 and let A be the elements of
J(R) of degree n. As in Lemma 4, the set dn(A) ∪ {0} is a nonzero ideal of Rd.

If we let S = dn(A) ∪ {0}, then S is not nil. When we are in case (1), σ = 1, hence
S = Sσ and Sσ is not nil. When we are in cases (2), (3), (4), or (5), then Lemma 7 asserts
that Sσ is not nil. Therefore, there exists some a ∈ A such that dn(a) is not nilpotent and
σ(dn(a)) = dn(a).

Since a ∈ J(R), a+ 1 is invertible in R. Therefore, for every i ≥ 0, then exists bi ∈ R such
that

(7) (a+ 1)bi = (dn(a))i

From among all the bi, let m be such that bm has minimal degree and let k be the degree of
bm.

From equation (7), we know that (dn(a))m = (a+ 1)bm . If we apply dn+k to this equation
and use the facts that a has degree n > 0, bm has degree k, and (dn(a))m has degree 0, we
obtain

0 = dn+k((dn(a))m) = dn+k((a+ 1)bm) = dn+k(abm) + dn+k(bm) =

dn+k(abm) =

(
n+ k

n

)
σk(dn(a))dk(bm) =

(
n+ k

n

)
dn(a)dk(bm).
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As a result, dn(a)dk(bm) = 0.

Since dn(a)dk(bm) = 0, if we apply dk to dn(a)bm, we obtain

dk(dn(a)bm) = σk(dn(a))dk(bm) = dn(a)dk(bm) = 0.

Therefore the degree of dn(a)bm is less than k.
Next, since (a + 1)bm = (dn(a))m, we can multiply this equation on the left by dn(a) to

obtain

(8) dn(a)(a+ 1)bm = (dn(a))m+1.

On the other hand, if we apply dn to dn(a)a− adn(a), we have

dn(dn(a)a− adn(a)) = σn(dn(a))dn(a)− dn(a)dn(a)

= dn(a)dn(a)− dn(a)dn(a) = 0.

Thus dn(a)a− adn(a) is an element of J(R) of degree less than n, hence dn(a)a− adn(a) = 0.
Since we now know that dn(a) and a commute, equation (8) can be rewritten as

(9) (a+ 1)(dn(a)bm) = (dn(a))m+1.

If we compare equations (7) and (9), we can see that dn(a)bm and bm both have the property
that they produce a power of dn(a) when multiplied on the left by a+1. However, the degree
of dn(a)bm is smaller than the degree of bm, contradicting the minimality of the degree of bm,
thereby concluding the proof. �
Our final lemma will play the role in proving Theorems 10 and 11 that Lemma 1 played in

proving Theorems 5 and 6.

Lemma 9. Let R be an algebra of characteristic 0 with a locally nilpotent σ-derivation d such
that dσ = σd. If a ∈ (J(R) ∩Rd ∩ d(R))σ such that r. annRd(a) = r. annRd(a2), then a = 0.

Dowód. Let x ∈ R such that d(x) = a and observe that

a = σ(a) = σ(d(x)) = d(σ(x)).

Since xa ∈ J(R), xa has a quasi-inverse b ∈ R and we have xa + b = xab. Multiplying this
equation on the left by a we obtain

(10) axa+ ab = axab.

If ab = 0, then axa = 0. Applying d to both sides of this equation gives us a3 = 0. However,
since r. annRd(a) = r. annRd(a2), it follows that a = 0.

To conclude the proof, by way of contradiction, we may assume that ab ̸= 0. If we let k
denote the degree of ab and if k ≥ 1, then applying dk+1 to both sides of equation (10) gives
us

0 = dk+1(axab) = (k + 1)σk(ad(x))dk(ab) = (k + 1)a3dk(b).

Therefore a3dk(b) = 0, which implies that adk(b) = 0. As a result,

dk(ab) = σk(a)dk(b) = adk(b) = 0,

contradicting that the degree of ab is k.

The only remaining possibility is that k = 0. However, in this case, if we apply d to
both sides of equation (10), we obtain d(axa) = d(axab). Simplifying this equation gives us
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a3 = a3b, which implies that a = ab. In light of this, equation (10) simplifies to xa+ b = xa,
which leads to the contradiction b = 0. Thus a = 0, as required. �

We can now prove our final main result.

Theorem 10. Let R be an algebra of characteristic 0 with a locally nilpotent regular σ-
derivation d such that dσ = σd. If Rd has no nonzero nil ideals, then J(R) = 0 in all of the
following cases:

(1) d is a derivation and Rd satisfies the acc on right annihilators of powers,
(2) σ has locally finite order, R is an algebra over an uncountable field, and Rd satisfies

the acc on right annihilators of powers,
(3) σ has locally finite order and Rd satisfies the acc on right annihilators,
(4) σ has locally finite order and Rd is reduced,
(5) σ has locally finite order and Rd satisfies a polynomial identity.

Dowód. By way of contradiction, suppose that J(R) ̸= 0. Regardless of which case we are in,
we can apply Lemma 8 to see that J(R) ∩Rd ̸= 0. Since d is regular, d(R) ∩Rd has nonzero
intersection with J(R) ∩Rd ̸= 0, hence

J(R) ∩Rd ∩ d(R) = (J(R) ∩Rd) ∩ (d(R) ∩Rd)

is a nonzero ideal of Rd.

In the first four cases, Rd satisfies the acc on right annihilators of powers. Therefore, if
α ∈ (J(R) ∩ Rd ∩ d(R))σ, there exists n ≥ 1 such that r. annRd(αn) = r. annRd(αn+1). If we
let a = αn, then r. annRd(a) = r. annRd(a2) and Lemma 9 asserts that a = 0. As a result,
αn = a = 0, hence every element of (J(R) ∩ Rd ∩ d(R))σ is nilpotent. Lemma 7 now asserts
that J(R) ∩ Rd ∩ d(R) contains a nonzero nil ideal. However, this immediately leads to the
contradiction that Rd contains a nonzero nil ideal.

Finally, in case (5), since Rd is a semiprime ring satisfying a polynomial identity, it follows
that every nonzero ideal of Rd has nonzero intersection with Z(Rd), the center of Rd. Observe
that Z(Rd) is reduced, therefore if we let S = (J(R) ∩ Rd ∩ d(R)) ∩ Z(Rd), then S ̸= 0 and
Lemma 7 tells us that Sσ is not nil. Since Rd is semiprime, we know that if a ∈ Z(Rd) then
r. annRd(a) = r. annRd(a2). Therefore, if 0 ̸= a ∈ Sσ, then Lemma 9 provides us with the
contradiction a = 0, thereby concluding the proof. �

We conclude this paper by removing the condition the d is regular in Theorem 10 and
examining the situation where J(Rd) = 0.

Theorem 11. Let R be an algebra of characteristic 0 with a locally nilpotent σ-derivation d
such that dσ = σd. If J(Rd) = 0 then J(R) = 0 in all of the following cases:

(1) d is a derivation and Rd satisfies the acc on right annihilators of powers,
(2) σ has locally finite order, R is an algebra over an uncountable field, and Rd satisfies

the acc on right annihilators of powers,
(3) σ has locally finite order and Rd satisfies the acc on right annihilators,
(4) σ has locally finite order and Rd is reduced,
(5) σ has locally finite order and Rd satisfies a polynomial identity.
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Dowód. This result follows from Theorem 10 in the same fashion that Theorem 6 follows from
Theorem 5. If we let A,B be the ideals of R constructed in the proof of Theorem 6, we can
restrict the action of d to A and then apply Theorem 10 to conclude that J(A) = 0. Since B ⊆
Rd and A⊕B is essential in R, we first see that J(B) = 0, then J(A⊕B) = J(A)⊕J(B) = 0,
and finally, J(R) = 0. �
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